Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Food Chem X ; 23: 101630, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108625

RESUMEN

Chickpea (Cicer arietinum L.) is a significant dietary source of flavonoids and the hypoglycemic activity were investigated in this study. Firstly, total twenty nine chickpea flavonoids were identified by UPLC-MS/MS with ononin, cyanidin-3-O-glucoside, astragalin, cynaroside, kaempferol-3-O-rutinoside, biochanin A, and daidzin being the most abundant among them. Our results demonstrated that chickpea flavonoids regulated glucose metabolism and lipid metabolism, and reduced oxidative stress in insulin resistance HepG2 cells. Furthermore, insulin resistance was ameliorated by chickpea flavonoids through the activation of insulin receptor substrate1 (IRS1), phosphoinositide 3-kinase (PI3K), and phosphorylated protein kinase B (Akt) in HepG2 cells. More importantly, key differential metabolites include L-tryptophan, L-tyrosine, l-glutamine and linoleic acid were reserved by chickpea flavonoids and correlated with glucolipid metabolism and oxidative stress in IR-HepG2 cells. In conclusion, these results indicated that chickpea flavonoids might act as potential natural products regulating insulin resistance in HepG2 cells.

2.
Nurse Educ Today ; 141: 106306, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013290

RESUMEN

BACKGROUND: Peripherally Inserted Central Catheter (PICC) is essential in neonatal care, especially for critically ill infants. Traditional training for neonatal PICC insertion faces challenges such as high costs and limited practice opportunities. Virtual simulation technology has emerged as a potential training tool, providing a realistic, risk-free learning environment. OBJECTIVES: The study aimed to assess the effectiveness of a virtual simulation teaching system in neonatal PICC care training, focusing on improving nursing students' knowledge, skills and interest in pediatric nursing. DESIGN: A quasi-experimental design was used, with assessments conducted before and after the activity. PARTICIPANTS: The study involved 58 graduate nursing students from China Medical University, divided into experimental and control groups. METHODS: The System Usability Scale (SUS) was utilized to assess teachers' experiences with the PICC virtual simulation software. Students' perceptions of the software and their interest in pediatric nursing were measured using Self-Administered Questionnaires. Furthermore, Theoretical and Operational Assessments were applied to determine the extent of students' knowledge and practical skills before and after experimentation. RESULTS: Teachers and students have favorably evaluated the software system, with notable improvements in theoretical scores following testing. While the virtual simulation system does not enhance practical skills, it does increase student interest in pediatric nursing and employment. CONCLUSIONS: This neonatal virtual simulation software serves as a complement to, rather than a replacement for, traditional clinical training. Its integration into educational programs significantly enhances learning outcomes.

3.
Regen Biomater ; 11: rbae080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055302

RESUMEN

Osteoinductive supplements without side effects stand out from the growth factors and drugs widely used in bone tissue engineering. Lithium magnesium sodium silicate hydrate (laponite) nanoflake is a promising bioactive component for bone regeneration, attributed to its inherent biosafety and effective osteoinductivity. Up to now, the in vivo osteogenic potential and mechanisms of laponite-encapsulated fibrous membranes remain largely unexplored. This study presents a unique method for homogeneously integrating high concentrations of laponite RDS into a polycaprolactone (PCL) matrix by dispersing laponite RDS sol into the polymer solution. Subsequently, a core-shell fibrous membrane (10RP-PG), embedding laponite-loaded PCL in its core, was crafted using coaxial electrospinning. The PCL core's slow degradation and the shell's gradient degradation enabled the sustained release of bioactive ions (Si and Mg) from laponite. In vivo studies on a critical-sized calvarial bone defect model demonstrated that the 10RP-PG membrane markedly enhanced bone formation and remodeling by accelerating the process of endochondral ossification. Further transcriptome analysis suggested that osteogenesis in the 10RP-PG membrane is driven by Mg and Si from endocytosed laponite, activating pathways related to ossification and endochondral ossification, including Hippo, Wnt and Notch. The fabricated nanocomposite fibrous membranes hold great promise in the fields of critical-sized bone defect repair.

4.
Metabolism ; : 155980, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053691

RESUMEN

BACKGROUND: The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS: The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls was performed, excluding patients previously treated with glucocorticoids. Several SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity of mineralocorticoids and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS: The demographic characteristics of COVID-19 patients were comparable with those of controls, excluding those that affected adrenal function. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with those in SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION: Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with exacerbation of inflammation, differentiation and the presence of dual-ZG/ZF identity cells. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of adrenal axis and the corticosteroid sensitivity.

5.
mBio ; 15(8): e0108824, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953634

RESUMEN

Numerous host factors, in addition to human angiotensin-converting enzyme 2 (hACE2), have been identified as coreceptors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrating broad viral tropism and diversified druggable potential. We and others have found that antihistamine drugs, particularly histamine receptor H1 (HRH1) antagonists, potently inhibit SARS-CoV-2 infection. In this study, we provided compelling evidence that HRH1 acts as an alternative receptor for SARS-CoV-2 by directly binding to the viral spike protein. HRH1 also synergistically enhanced hACE2-dependent viral entry by interacting with hACE2. Antihistamine drugs effectively prevent viral infection by competitively binding to HRH1, thereby disrupting the interaction between the spike protein and its receptor. Multiple inhibition assays revealed that antihistamine drugs broadly inhibited the infection of various SARS-CoV-2 mutants with an average IC50 of 2.4 µM. The prophylactic function of these drugs was further confirmed by authentic SARS-CoV-2 infection assays and humanized mouse challenge experiments, demonstrating the therapeutic potential of antihistamine drugs for combating coronavirus disease 19.IMPORTANCEIn addition to human angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can utilize alternative cofactors to facilitate viral entry. In this study, we discovered that histamine receptor H1 (HRH1) not only functions as an independent receptor for SARS-CoV-2 but also synergistically enhances ACE2-dependent viral entry by directly interacting with ACE2. Further studies have demonstrated that HRH1 facilitates the entry of SARS-CoV-2 by directly binding to the N-terminal domain of the spike protein. Conversely, antihistamine drugs, primarily HRH1 antagonists, can competitively bind to HRH1 and thereby prevent viral entry. These findings revealed that the administration of repurposable antihistamine drugs could be a therapeutic intervention to combat coronavirus disease 19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Receptores Histamínicos H1 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Internalización del Virus/efectos de los fármacos , Receptores Histamínicos H1/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , Tratamiento Farmacológico de COVID-19 , Receptores Virales/metabolismo , Unión Proteica , Antagonistas de los Receptores Histamínicos/farmacología , Antivirales/farmacología
6.
Colloids Surf B Biointerfaces ; 241: 114047, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897025

RESUMEN

Polymer-based scaffolds with different degradability have been investigated to screen the matrix whose degradation rate is more closely matched with the bone regeneration rate. However, these comparisons are inclined to be compromised by the animal individual differences. In this study, we constructed an integrated scaffold model comprising four parts with different degradability and bioactivity to achieve an in situ comparison of bone regeneration ability of different scaffolds. Slow-degradable polycaprolactone (PCL), fast-degradable poly (lactic-co-glycolic acid) (PLGA), and silica-coated PCL and PLGA scaffolds were assembled into a round sheet to form a hydroxyapatite (HA)-free integrated scaffold. HA-doped PCL, PLGA, and silica-coated PCL and PLGA scaffolds were assembled to create an HA-incorporated integrated scaffold. The in vivo experimental results demonstrated that the local acid microenvironment caused by the rapid degradation of PLGA interfered with the osteogenic process promoted by PCL-based scaffolds in defect areas implanted with HA-free integrated scaffolds. Since the incorporation of HA alleviated the acidic microenvironment to some extent, each scaffold in HA-incorporated scaffolds exhibited its expected bone regeneration capacity. Consequently, it is feasible to construct an integrated structure for comparing the osteogenic effects of various scaffolds in situ, when there is no mutual interference between the materials. The strategy presented in this study inspired the structure design of biomaterials to enable in situ comparison of bone regeneration capacity of scaffolds.


Asunto(s)
Durapatita , Osteogénesis , Poliésteres , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Poliésteres/química , Durapatita/química , Regeneración Ósea/efectos de los fármacos , Polímeros/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Ácido Láctico/química
7.
Int J Biol Macromol ; 274(Pt 2): 133500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944071

RESUMEN

In traditional Chinese medicine, Lycium barbarum is of rich medicinal value, and its polysaccharides are particularly interesting due to their significant pharmacological effects and potential health benefits. This study investigated the immunomodulatory effects of Lycium barbarum polysaccharides (LBPs) by examining their interaction with the TLR4/MD-2 complex and the impacts of gastrointestinal digestion on these interactions. We discovered that the affinity binding of LBPs for TLR4/MD-2 and their cytokine induction capability are influenced by molecular weight, with medium-sized LBPs (100-300 kDa) exhibiting stronger binding affinity and induction capability. Conversely, LBPs smaller than 10 kDa showed reduced activity. Additionally, the content of arabinose and galactose within the LBPs fractions was found to correlate positively with both receptor affinity and cytokine secretion. Simulated gastrointestinal digestion resulted in the degradation of LBPs into smaller fragments that are rich in glucose. Although these fragments exhibited decreased binding affinity to the TLR4/MD-2 complex, they maintained their activity to promote cytokine production. Our findings highlight the significance of molecular weight and specific monosaccharide composition in the immunomodulatory function of LBPs and emphasize the influence of gastrointestinal digestion on the effects of LBPs. This research contributes to a better understanding of the mechanisms underlying the immunomodulatory effects of traditional Chinese medicine polysaccharides and their practical application.


Asunto(s)
Digestión , Medicamentos Herbarios Chinos , Peso Molecular , Receptor Toll-Like 4 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Receptor Toll-Like 4/metabolismo , Digestión/efectos de los fármacos , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Humanos , Citocinas/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Animales , Lycium/química , Ratones , Monosacáridos/análisis , Monosacáridos/química , Polisacáridos/farmacología , Polisacáridos/química
8.
Mater Today Bio ; 26: 101063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698884

RESUMEN

Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.

9.
Environ Sci Pollut Res Int ; 31(19): 28775-28788, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558338

RESUMEN

With the extensive development of nuclear energy, soil uranium contamination has become an increasingly prominent problem. The development of evaluation systems for various uranium contamination levels and soil microhabitats is critical. In this study, the effects of uranium contamination on the carbon source metabolic capacity and microbial community structure of soil microbial communities were investigated using Biolog microplate technology and high-throughput sequencing, and the responses of soil biochemical properties to uranium were also analyzed. Then, ten key biological indicators as reliable input variables, including arylsulfatase, biomass nitrogen, metabolic entropy, microbial entropy, Simpson, Shannon, McIntosh, Nocardioides, Lysobacter, and Mycoleptodisus, were screened by random forest (RF), Boruta, and grey relational analysis (GRA). The optimal uranium-contaminated soil microbiological evaluation model was obtained by comparing the performance of three evaluation methods: partial least squares regression (PLS), support vector regression (SVR), and improved particle algorithm (IPSO-SVR). Consequently, partial least squares regression (PLS) has a higher R2 (0.932) and a lower RMSE value (0.214) compared to the other. This research provides a new evaluation method to describe the relationship between soil ecological effects and biological indicators under nuclear contamination.


Asunto(s)
Microbiología del Suelo , Suelo , Uranio , Uranio/análisis , Suelo/química , Contaminantes del Suelo , Contaminantes Radiactivos del Suelo/análisis
10.
Pathol Res Pract ; 256: 155251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490097

RESUMEN

Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.


Asunto(s)
Corteza Suprarrenal , COVID-19 , Humanos , Enfermedad Crítica , Estudios Retrospectivos , Glándulas Suprarrenales , Corticoesteroides
11.
mBio ; 15(3): e0335823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38303107

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE: The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.


Asunto(s)
COVID-19 , Exosomas , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Exosomas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Antivirales/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Unión Proteica
12.
RSC Adv ; 14(4): 2697-2703, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38229716

RESUMEN

The active site accessibility and high loading of gold nanoparticles (AuNPs) are key factors affecting the catalytic activity of supported AuNP-based catalysts. However, the preparation of supported AuNP-based catalysts with highly accessible active sites still remains a challenge. Herein, sphere-on-sphere (SoS) silica microspheres with a hierarchical structure, good dispersion and high surface density of thiol groups (10 SH nm-2) are prepared and used as a platform for the growth of high-density AuNPs. The obtained hierarchical Si@Au micro-/nanostructure consisting of 0.55 µm SoS silica microspheres and 7.3 nm AuNPs (SoS-0.55@Au-7.3) is found to show excellent peroxidase-mimicking activity (Km = 0.033 mM and Vmax = 34.6 × 10-8 M s-1) with merits of high stability and good reusability. Furthermore, the as-obtained SoS-0.55@Au-7.3-based system can sensitively detect hydrogen peroxide (H2O2) with a low detection limit of 1.6 µM and a wide linear range from 2.5 µM to 1.0 mM. The high catalytic activity, excellent stability and good reusability of SoS-0.55@Au-7.3 imply its great prospects in biosensing and biomedical analysis.

13.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948998

RESUMEN

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Insuficiencia Respiratoria , Humanos , COVID-19/complicaciones , COVID-19/patología , Fibrosis Pulmonar/patología , Autopsia , SARS-CoV-2 , Pulmón/patología , Macrófagos/patología , Insuficiencia Respiratoria/patología , Apoptosis
14.
Viruses ; 15(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37632009

RESUMEN

Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several US FDA-approved drugs and identified phenothiazine derivatives with the ability to potently inhibit the infection of pseudotyped SARS-CoV-2 and distinct variants of concern (VOCs), including B.1.617.2 (Delta) and currently circulating Omicron sublineages XBB and BQ.1.1, as well as pseudotyped SARS-CoV and MERS-CoV. Mechanistic studies suggested that phenothiazines predominantly inhibited SARS-CoV-2 pseudovirus (PsV) infection at the early stage and potentially bound to the spike (S) protein of SARS-CoV-2, which may prevent the proteolytic cleavage of the S protein, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that phenothiazines can serve as a potential broad-spectrum therapeutic drug for the treatment of SARS-CoV-2 infection as well as the infection of future emerging human coronaviruses (HCoVs).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Fenotiazinas/farmacología , Glicoproteína de la Espiga del Coronavirus
15.
Adv Healthc Mater ; 12(20): e2300624, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36938866

RESUMEN

The combined design of scaffold structure and multi-biological factors is a prominent strategy to promote bone regeneration. Herein, a composite scaffold of mesoporous hydroxyapatite (HA) microspheres loaded with the bone morphogenetic protein-2 (BMP-2) and a poly(DL-lactic-co-glycolic acid) (PLGA) matrix is constructed by 3D printing. Furthermore, the chemokine stromal cell-derived factor-1α (SDF-1α) is adsorbed on a scaffold surface to achieve the sequential release of the dual-biofactors. The results indicate that the rapid release of SDF-1α chemokine on the scaffold surface effectively recruits bone marrow-derived mesenchymal stem cells (BMSCs) to the target defect area, whereas the long-term sustained release of BMP-2 from the HA microspheres in the degradable PLGA matrix successfully triggers the osteogenic differentiation in the recruited BMSCs, significantly promoting bone regeneration and reconstruction. In addition, these structures/biofactors specially combining scaffold exhibit significantly better biological performance than that of other combined scaffolds, including the bare HA/PLGA scaffold, the scaffold loaded with SDF-1α or BMP-2 biofactor alone, and the scaffold with surface SDF-1α and BMP-2 dual-biofactors. The utilization of mesoporous HA, the assembly method, and sequential release of the two biofactors in the 3D printed composite scaffold present a new method for future design of high-performance bone repairing scaffolds.


Asunto(s)
Durapatita , Osteogénesis , Durapatita/farmacología , Durapatita/química , Microesferas , Andamios del Tejido/química , Quimiocina CXCL12/farmacología , Ácido Láctico/química , Regeneración Ósea
16.
ACS Appl Mater Interfaces ; 15(6): 7804-7820, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36725088

RESUMEN

The regeneration of oral tissues is a challenging clinical problem because of the complex microbial and biological stress environments. Electrospun fibrous scaffolds have attracted significant interest as effective barrier membranes for guided bone regeneration (GBR); however, no mature strategy yet exists for the surface modification of fibers to provide versatility to satisfy clinical requirements. This study demonstrated a practical biosafety strategy: the combined use of plant polyphenols and LL-37 peptides to modify the fiber surface to endow the fibrous scaffold with antimicrobial activity, immunoregulation, and vascularized bone regeneration. We confirmed that the LL-37 peptides interacted with tannic acid (TA) through noncovalent bonds through experiments and molecular docking simulation analysis. In vitro experiments showed that the TA coating imparted strong antibacterial properties to the fibrous scaffold, but it also caused cytotoxicity. The grafting of LL-37 peptide promoted the spreading, migration, and osteogenic differentiation of mesenchymal stem cells and was also conducive to the M2 polarization of RAW264.7 cells. In vivo experiments further verified that the LL-37 peptide-grafted fibrous scaffold significantly enhanced angiogenesis, anti-inflammatory effects, and type-H vascularized bone regeneration. Overall, the fibrous scaffold modified by the LL-37 peptide through TA grafting has significant potential for GBR applications.


Asunto(s)
Nanofibras , Osteogénesis , Catelicidinas/farmacología , Andamios del Tejido/química , Nanofibras/química , Polifenoles/farmacología , Simulación del Acoplamiento Molecular , Regeneración Ósea , Diferenciación Celular , Antiinflamatorios/farmacología , Antibacterianos/farmacología , Ingeniería de Tejidos
17.
mBio ; 14(2): e0349622, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36853048

RESUMEN

Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Necrosis , Antibacterianos/uso terapéutico , Recurrencia , Antituberculosos/uso terapéutico
18.
Food Sci Nutr ; 11(1): 236-248, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36655092

RESUMEN

Chickpeas are a very important legume crop and have abundant protein, carbohydrate, lipid, fiber, isoflavone, and mineral contents. The chemical compositions of the four chickpea species (Muying-1, Keying-1, Desi-1, Desi-2) from Xinjiang, China, were analyzed, and 46 different flavonoids in Muying-1 were detected. The moisture content ranged from 7.64 ± 0.01 to 7.89 ± 0.02 g/100 g, the content of starch in the kabuli chickpeas was greater than that in the desi chickpeas, the total ash content ranged from 2.59 ± 0.05 to 2.69 ± 0.03 g/100 g and the vitamin B1 content of the chickpeas ranged from 0.31 to 0.36 mg/100 g. The lipid content ranged from 6.35 to 9.35 g/100 g and the major fatty acids of chickpeas were linoleic, oleic, and palmitic acids. Both kabuli and desi chickpeas have a high content of unsaturated fatty acids (USFAs), Muying-1 and Desi-1 contained the highest level of linoleic acid, and Keying-1 had the highest oleic acid content. The protein level ranged from 19.79 ± 2.89 to 23.38 ± 0.30 g/100 g, and the main amino acids were aspartic acid, glutamic acid, and arginine acid. The four chickpea species had significant amounts of essential amino acids (EAAs). Forty-six varieties of flavonoids in Muying-1 were determined by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS) analysis, and there were higher levels of conjugate flavonoids (55.95%) than free flavonoids (44.05%). Isoflavones were the most abundant flavonoids in Muying-1, and among the isoflavones, daidzin had the highest content, followed by biochanin A and genistin. Muying-1 was rich in daidzin, biochanin A, genistin, troxerutin, isorhamnetin, astilbin, L-epicatechin, astragalin, acacetin, hyperoside, and myricitrin. Information provided in the study will be helpful to further understand the chemical composition of chickpeas and be beneficial to the development of chickpeas.

19.
J Mater Chem B ; 11(5): 1115-1130, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636931

RESUMEN

The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.


Asunto(s)
Durapatita , Osteogénesis , Humanos , Durapatita/química , Simvastatina/farmacología , Simvastatina/química , Microesferas , Estroncio/farmacología , Células Endoteliales , Regeneración Ósea , Iones
20.
Artículo en Inglés | MEDLINE | ID: mdl-33558290

RESUMEN

Polyketide synthase 13 (Pks13) is an important enzyme found in Mycobacterium tuberculosis (M. tuberculosis) that condenses two fatty acyl chains to produce α-alkyl ß-ketoesters, which in turn serve as the precursors for the synthesis of mycolic acids that are essential building blocks for maintaining the cell wall integrity of M. tuberculosis Coumestan derivatives have recently been identified in our group as a new chemotype that exert their antitubercular effects via targeting of Pks13. These compounds were active on both drug-susceptible and drug-resistant strains of M. tuberculosis as well as showing low cytotoxicity to healthy cells and a promising selectivity profile. No cross-resistance was found between the coumestan derivatives and first-line TB drugs. Here we report that treatment of M. tuberculosis bacilli with 15 times the MIC of compound 1, an optimized lead coumestan compound, resulted in a colony forming unit (CFU) reduction from 6.0 log10 units to below the limit of detection (1.0 log10 units) per mL culture, demonstrating a bactericidal mechanism of action. Single dose (10 mg/kg) pharmacokinetic studies revealed favorable parameters with a relative bioavailability of 19.4%. In a mouse infection and chemotherapy model, treatment with 1 showed dose-dependent mono-therapeutic activity, whereas treatment with 1 in combination with rifampin showed clear synergistic effects. Together these data suggest that coumestan derivatives are promising agents for further TB drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...