Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Biol Med ; 21(4)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425216

RESUMEN

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Asunto(s)
Neoplasias Hematológicas , Células Asesinas Naturales , Receptores Inmunológicos , Humanos , Células Asesinas Naturales/inmunología , Animales , Ratones , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Antígenos CD/metabolismo , Antígenos CD/inmunología , Masculino , Línea Celular Tumoral , Citotoxicidad Inmunológica , Fosfatidilserinas/metabolismo
3.
Front Immunol ; 14: 1113303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114050

RESUMEN

Bispecific antibodies have attracted more attention in recent years for the treatment of tumors, in which most of them target CD3, which mediates the killing of tumor cells by T cells. However, T-cell engager may cause serious side effects, including neurotoxicity and cytokine release syndrome. More safe treatments are still needed to address unmet medical needs, and NK cell-based immunotherapy is a safer and more effective way to treat tumors. Our study developed two IgG-like bispecific antibodies with the same configuration: BT1 (BCMA×CD3) attracted T cells and tumor cells, while BK1 (BCMA×CD16) attracted NK cells and tumor cells. Our study showed that BK1 mediated NK cell activation and upregulated the expression of CD69, CD107a, IFN-γ and TNF. In addition, BK1 elicited a stronger antitumor effect than BT1 both in vitro and in vivo. Combinatorial treatment (BK1+BT1) showed a stronger antitumor effect than either treatment alone, as indicated by in vitro experiments and in vivo murine models. More importantly, BK1 induced fewer proinflammatory cytokines than BT1 both in vitro and in vivo. Surprisingly, BK1 reduced cytokine production in the combinatorial treatment, suggesting the indispensable role of NK cells in the control of cytokine secretion by T cells. In conclusion, our study compared NK-cell engagers and T-cell engagers targeting BCMA. The results indicated that NK-cell engagers were more effective with less proinflammatory cytokine production. Furthermore, the use of NK-cell engagers in combinatorial treatment helped to reduce cytokine secretion by T cells, suggesting a bright future for NK-cell engagers in clinical settings.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Ratones , Animales , Linfocitos T , Citocinas/metabolismo , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno de Maduración de Linfocitos B/metabolismo , Células Asesinas Naturales
4.
Front Immunol ; 13: 1040256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389751

RESUMEN

More than 85% of colorectal cancer (CRC) patients, who are with microsatellite stability (MSS), are resistant to immune checkpoint blockade (ICB) treatment. To overcome this resistance, combination therapy with chemotherapy is the most common choice. However, many CRC patients do not benefit more from combination therapy than chemotherapy alone. We hypothesize that severe immunosuppression, caused by chemotherapy administered at the maximum tolerated dose, antagonizes the ICB treatment. In this study, we found that low-dose oxaliplatin (OX), an immunogenic cell death (ICD)-induced drug, increased the antitumor response of TIGIT blockade against CT26 tumor, which is regarded as a MSS tumor. Combined treatment with OX and TIGIT blockade fostered CD8+ T-cell infiltration into tumors and delayed tumor progression. Importantly, only low-dose immunogenic chemotherapeutics successfully sensitized CT26 tumors to TIGIT blockade. In contrast, full-dose OX induces severe immunosuppression and impaired the efficacy of combination therapy. Further, we also found that lack of synergy between nonimmunogenic chemotherapeutics and TIGIT blockade. Consequently, this study suggests that the strategies of combination treatment of chemotherapy and ICB should be re-evaluated. The chemotherapeutics should be chosen for the potential to ICD and the dosage and regimen should be also optimized.


Asunto(s)
Neoplasias del Colon , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Repeticiones de Microsatélite , Receptores Inmunológicos
5.
Zhongguo Zhong Yao Za Zhi ; 44(3): 475-481, 2019 Feb.
Artículo en Chino | MEDLINE | ID: mdl-30989911

RESUMEN

In this study, taking Cistanche deserticola in Xinjiang as the experimental material, the optimal process for extracting polysaccharides from C. deserticola with water extraction was studied by using single factor and orthogonal experiment. Its effects on protein removal and polysaccharides retaining were investigated by using Sevag, enzymatic method or combination of these two methods, so as to determine the optimal method for protein removal from polysaccharides of C. deserticola; the decolorization and purification methods such as macroporous resin of AB-8 and activated Carbon were used to determine the optimal process. The results showed that the extraction rate of polysaccharides from C. deserticola was 18.40% during the optimal process of the water extraction as follows: extraction temperature 75 ℃, extraction time 165 min and solid-liquid ratio 1∶55. The protein removal rate can reach 31.40% and polysaccharide retention rate can reach 96.00% under the optimal protein removal process: temperature 50 ℃, time 2 h, and papain dosage 0.2%. The decolorization rate of activated Carbon and macroporous resin called AB-8 was 80.37% and 86.43%, and the recovery rate of polysaccharides was 77.05% and 91.93%, respectively, suggesting that macroporous resin was more suitable for decoloration. Macroporous resin named AB-8 increased the purity of the polysaccharide crude extract from 67.70% to 84.80% under the following conditions: concentration of the sample 4 g·L~(-1), concentration of the eluent 60% ethanol, and the flow rate 1 mL·min~(-1), showing significant purification effect.


Asunto(s)
Cistanche/química , Extractos Vegetales/química , Polisacáridos/aislamiento & purificación , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...