Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 353: 120236, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310800

RESUMEN

Excessive irrigation and nitrogen application have long seriously undermined agricultural sustainability in the North China Plain (NCP), leading to declining groundwater tables and intensified greenhouse gas (GHG) emissions. Developing low-input management practices that meet the growing food demand while reducing environmental costs is urgently needed. Here, we developed a novel nitrogen management strategy for a typical winter wheat-summer maize rotation system in the NCP under limited irrigation (wheat sowing irrigation only (W0) or sowing and jointing irrigation (W1)) and low nitrogen input (360 kg N ha-1, about 70 % of traditional annual nitrogen input). Novel nitrogen management strategy promoted efficient nitrogen fertilizer uptake and utilization by both crops via optimization of nitrogen fertilizer allocation between the two crops, i.e., increasing nitrogen inputs to wheat (from 180 to 240 kg N ha-1) while reducing nitrogen inputs to maize (from 180 to 120 kg N ha-1). Three-year field study demonstrated that integrated management practices combining novel nitrogen management strategy with limited irrigation increased annual yields and PFPN by 1.9-5.7 %, and reduced TGE by 55-68 kg CO2-eq ha-1 and GHGI by 2.2-10.3 %, without any additional cost. Our results provide agricultural operators and policymakers with practical and easy-to-scalable integrated management strategy, and offer key initiative to promote grain production in the NCP towards agriculture sustainable intensification with high productivity and efficiency, water conservation and emission reduction.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Triticum , Zea mays , Nitrógeno/análisis , Fertilizantes , Agricultura/métodos , China , Suelo
2.
Plant Cell Environ ; 47(5): 1575-1591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269615

RESUMEN

The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.


Asunto(s)
Flores , Triticum , Flores/fisiología , Triticum/fisiología , Perfilación de la Expresión Génica , Grano Comestible/genética , Fertilidad , Transcriptoma/genética
3.
J Exp Bot ; 75(7): 1967-1981, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069503

RESUMEN

Within a spike of wheat, the central spikelets usually generate three to four fertile florets, while the basal spikelets generate zero to one fertile floret. The physiological and transcriptional mechanism behind the difference in fertility between the basal and central spikelets is unclear. This study reports a high temporal resolution investigation of transcriptomes, number and morphology of floret primordia, and physiological traits. The W6.5-W7.5 stage was regarded as the boundary to distinguish between fertile and abortive floret primordia; those floret primordia reaching the W6.5-W7.5 stage during the differentiation phase (3-9 d after terminal spikelet stage) usually developed into fertile florets in the next dimorphism phase (12-27 d after terminal spikelet stage), whereas the others aborted. The central spikelets had a greater number of fertile florets than the basal spikelets, which was associated with more floret primordia reaching the W6.5-W7.5 stage. Physiological and transcriptional results demonstrated that the central spikelets had a higher sucrose content and lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than the basal spikelets due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we propose a model in which ABA and JA accumulation is induced under limiting sucrose availability (basal spikelet) through the up-regulation of genes involved in ABA and JA synthesis; this leads to floret primordia in the basal spikelets failing to reach their fertile potential (W6.5-W7.5 stage) during the differentiation phase and then aborting. This fertility repression model may also regulate spikelet fertility in other cereal crops and potentially provides genetic resources to improve spikelet fertility.


Asunto(s)
Ácido Abscísico , Ciclopentanos , Flores , Oxilipinas , Sulfonamidas , Flores/genética , Triticum/genética , Sacarosa , Fertilidad/genética
4.
Plant Physiol ; 193(1): 555-577, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37313777

RESUMEN

Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.


Asunto(s)
Cromosomas de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Sapindaceae , Biomarcadores/metabolismo , Pared Celular , Cromatina , Redes Reguladoras de Genes , Genoma de Planta , Código de Histonas , Anotación de Secuencia Molecular , Sapindaceae/citología , Sapindaceae/crecimiento & desarrollo , Sapindaceae/metabolismo , Transcriptoma
5.
Plant Physiol Biochem ; 195: 362-374, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682137

RESUMEN

The early auxin responsive small auxin up-regulated RNA (SAUR) family is an important gene family in the auxin signal transduction pathway. This study focused on the regulatory mechanism of DlSAUR genes during early somatic embryogenesis (SE) and its response to hormone treatment and abiotic stress. Mining of the available Dimocarpus longan Lour. (D. longan) genome sequence yielded 68 putative SAUR genes. Transcript profiles based on RNA-seq data showed that most of the 24 detected DlSAUR genes were highly expressed in the globular embryos (GE) (10) and most of them responded to heat stress and 2,4-D treatment. The results of qRT-PCR showed that most of DlSAUR genes were up-regulated under auxin inhibitor N-1-naphthylphthalamic acid (NPA) and auxin indole-3-acetic acid (IAA) treatments. Moreover, NPA could promote longan SE. The assay for ATAC-seq data analysis showed that chromatin accessibility of 19 of the 24 DlSAUR genes were open during early SE, and most DlSAUR genes differentially expressed during early SE were not associated with H3K4me1 signal enrichment. The DlSAUR32 was selected for subcellular localization and RNA-seq analysis, which encode a cell nuclear-localized protein. Dual-luciferase assays and transient transformation showed that the transcription factors (TFs) DlWRKY75-1 and DlWRKY75-2 might bind to the DlSAUR32 promoters to inhibition gene transcription. Transient overexpression of DlWRKY75-1 and DlWRKY75-2 decreased IAA content in N. benthamiana leaves. Thus, the regulatory network composed of DlSAUR32 and its related TFs may regulate the early longan SE and be involved in the auxin response regulatory pathway of longan.


Asunto(s)
Reguladores del Crecimiento de las Plantas , ARN , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430536

RESUMEN

Strigolactones (SLs), a new class of plant hormones, are implicated in the regulation of various biological processes. However, the related family members and functions are not identified in longan (Dimocarpus longan Lour.). In this study, 23 genes in the CCD, D27, and SMXL family were identified in the longan genome. The phylogenetic relationships, gene structure, conserved motifs, promoter elements, and transcription factor-binding site predictions were comprehensively analysed. The expression profiles indicated that these genes may play important roles in longan organ development and abiotic stress responses, especially during early somatic embryogenesis (SE). Furthermore, GR24 (synthetic SL analogue) and Tis108 (SL biosynthesis inhibitor) could affect longan early SE by regulating the levels of endogenous IAA (indole-3-acetic acid), JA (jasmonic acid), GA (gibberellin), and ABA (abscisic acid). Overexpression of SMXL6 resulted in inhibition of longan SE by regulating the synthesis of SLs, carotenoids, and IAA levels. This study establishes a foundation for further investigation of SL genes and provides novel insights into their biological functions.


Asunto(s)
Proteínas de Plantas , Sapindaceae , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Desarrollo Embrionario/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...