Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
Inorg Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757599

RESUMEN

It can provide ideas for the use of uranium elements in the treatment of spent fuel from nuclear wastewater to explore the application potential of uranium element. Thus, it is necessary to research the structure and properties of a novel uranyl coordination polymer (CP) for uranium recovery and reuse. Herein, we designed and prepared a new uranyl CP U-CMNDI based on UO22+ and H2CMNDI (H2CMNDI = N, N'-bis(carboxymethyl)-1,4,5,8-naphthalenediimide). Structural analysis shows that two uranyl ions are connected by two parallel deprotonated CMNDI ligands to form a discrete uranyl dimer structure. U-CMNDI can act as a potential stimulus-responsive halide ion sensor by a fluorescence "turn on" response in water. The limit of detection for fluoride (F-), bromide (Br-), iodide (I-), and chloride (Cl-) is 5.00, 5.32, 5.49, and 5.73 µM, respectively. The fluorescence "turn on" behavior is based on the photoinduced electron transfer (PET) mechanism between halide ions and electron-deficient NDI cores. In addition, U-CMNDI demonstrates a color response to ultraviolet light, exhibiting reversible photochromic behavior with a notable color change. The color change mechanism can contribute to the PET process and the radical process.

2.
J Tradit Complement Med ; 14(3): 312-320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707926

RESUMEN

Background: Diabetic kidney disease (DKD) is one of diabetic complications, which has become the leading cause of end-stage kidney disease. In addition to angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker(ACEI/ARB) and sodium-glucose cotransporter-2 inhibitor (SGLT2i), traditional Chinese medicine (TCM) is an effective alternative treatment for DKD. In this study, the effect of Qufeng Tongluo (QFTL) decoction in decreasing proteinuria has been observed and its mechanism has been explored based on autophagy regulation in podocyte. Methods: In vivo study, db/db mice were used as diabetes model and db/m mice as blank control. Db/db mice were treated with QFTL decoction, rapamycin, QFTL + 3-Methyladenine (3-MA), trehalose, chloroquine (CQ) and QFTL + CQ. Mice urinary albumin/creatinine (UACR), nephrin and autophagy related proteins (LC3 and p62) in kidney tissue were detected after intervention of 9 weeks. Transcriptomics was operated with the kidney tissue from model group and QFTL group. In vitro study, mouse podocyte clone-5 (MPC-5) cells were stimulated with hyperglycemic media (30 mmol/L glucose) or cultured with normal media. High-glucose-stimulated MPC-5 cells were treated with QFTL freeze-drying powder, rapamycin, CQ, trehalose, QFTL+3-MA and QFTL + CQ. Cytoskeletal actin, nephrin, ATG-5, ATG-7, Beclin-1, cathepsin L and cathepsin B were assessed. mRFP-GFP-LC3 was established by stubRFP-sensGFP-LC3 lentivirus transfection. Results: QFTL decoction decreased the UACR and increased the nephrin level in kidney tissue and high-glucose-stimulated podocytes. Autophagy inhibitors, including 3-MA and chloroquine blocked the effects of QFTL decoction. Further study showed that QFTL decoction increased the LC3 expression and relieved p62 accumulation in podocytes of db/db mice. In high-glucose-stimulated MPC-5 cells, QFTL decoction rescued the inhibited LC3 and promoted the expression of ATG-5, ATG-7, and Beclin-1, while had no effect on the activity of cathepsin L and cathepsin B. Results of transcriptomics also showed that 51 autophagy related genes were regulated by QFTL decoction, including the genes of ATG10, SCOC, ATG4C, AMPK catalytic subunit, PI3K catalytic subunit, ATG3 and DRAM2. Conclusion: QFTL decoction decreased proteinuria and protected podocytes in db/db mice by regulating autophagy.

4.
Front Endocrinol (Lausanne) ; 15: 1345293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726343

RESUMEN

Objective: The activation of platelets in individuals with type 2 diabetes mellitus (T2DM) triggers inflammation and hemodynamic abnormalities, contributing to the development of diabetic kidney disease (DKD). Despite this, research into the relationship between plateletcrit (PCT) levels and DKD is sparse, with inconsistent conclusions drawn regarding the connection between various platelet parameters and DKD. This highlights the necessity for comprehensive, large-scale population studies. Therefore, our objective is to explore the association between PCT levels and various platelet parameters in relation to DKD. Methods: In this cross-sectional study, hematological parameter data were collected from a cohort of 4,302 hospitalized Chinese patients. We analyzed the relationships between PCT, platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), platelet large cell ratio (P-LCR), and DKD, along with the urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these parameters. Results: DKD patients exhibited significantly higher PCT levels compared to those without DKD. Multivariate regression analysis identified elevated PCT and PLT levels as potential independent risk factors for both DKD and UACR, while lower MPV levels might serve as independent protective factors for eGFR. The areas under the ROC curve for PCT in relation to DKD and UACR (≥30 mg/g) were 0.523 and 0.526, respectively. The area under the ROC curve for PLT in relation to UACR (≥30 mg/g) was 0.523. Conclusion: PCT demonstrates a weak diagnostic value for T2DM patients at risk of developing DKD and experiencing proteinuria, and PLT shows a similarly modest diagnostic utility for detecting proteinuria. These insights contribute to a deeper understanding of the complex dynamics involved in DKD. Additionally, incorporating these markers into routine clinical assessments could enhance risk stratification, facilitating early interventions and personalized management strategies.


Asunto(s)
Plaquetas , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Estudios Transversales , Masculino , Femenino , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/etiología , Persona de Mediana Edad , Recuento de Plaquetas , Prevalencia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Plaquetas/metabolismo , Plaquetas/patología , Anciano , Volúmen Plaquetario Medio , Tasa de Filtración Glomerular , Factores de Riesgo , Adulto , Biomarcadores/sangre
5.
Angew Chem Int Ed Engl ; : e202407056, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728222

RESUMEN

A copper-catalyzed C4-selective addition of silicon nucleophiles released from an Si-B reagent to prochiral pyridinium triflates is reported. The dearomatization proceeds with excellent enantioselectivity using Cu(CH3CN)4PF6 as the precatalyst and (R,R)-Ph-BPE as the chiral ligand. A carbonyl group at C3 is required, likely acting a weak group to preorganize and direct the nucleophilc attack towards C4. The resulting 4-silylated 1,4-dihydropyridines can be further converted into functionalized piperidine derivatives.

6.
Mol Ecol ; : e17372, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709214

RESUMEN

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.

7.
Bone Res ; 12(1): 27, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714649

RESUMEN

Tendon adhesion is a common complication after tendon injury with the development of accumulated fibrotic tissues without effective anti-fibrotic therapies, resulting in severe disability. Macrophages are widely recognized as a fibrotic trigger during peritendinous adhesion formation. However, different clusters of macrophages have various functions and receive multiple regulation, which are both still unknown. In our current study, multi-omics analysis including single-cell RNA sequencing and proteomics was performed on both human and mouse tendon adhesion tissue at different stages after tendon injury. The transcriptomes of over 74 000 human single cells were profiled. As results, we found that SPP1+ macrophages, RGCC+ endothelial cells, ACKR1+ endothelial cells and ADAM12+ fibroblasts participated in tendon adhesion formation. Interestingly, despite specific fibrotic clusters in tendon adhesion, FOLR2+ macrophages were identified as an antifibrotic cluster by in vitro experiments using human cells. Furthermore, ACKR1 was verified to regulate FOLR2+ macrophages migration at the injured peritendinous site by transplantation of bone marrow from Lysm-Cre;R26RtdTomato mice to lethally irradiated Ackr1-/- mice (Ackr1-/- chimeras; deficient in ACKR1) and control mice (WT chimeras). Compared with WT chimeras, the decline of FOLR2+ macrophages was also observed, indicating that ACKR1 was specifically involved in FOLR2+ macrophages migration. Taken together, our study not only characterized the fibrosis microenvironment landscape of tendon adhesion by multi-omics analysis, but also uncovered a novel antifibrotic cluster of macrophages and their origin. These results provide potential therapeutic targets against human tendon adhesion.


Asunto(s)
Movimiento Celular , Macrófagos , Regeneración , Humanos , Animales , Macrófagos/metabolismo , Ratones , Tendones/metabolismo , Tendones/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/metabolismo , Traumatismos de los Tendones/genética , Proteómica , Femenino , Multiómica
8.
Biomacromolecules ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720431

RESUMEN

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.

9.
ACS Nano ; 18(20): 12945-12956, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717846

RESUMEN

P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.

10.
Int J Biol Macromol ; 270(Pt 1): 132314, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740160

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is an annual coarse cereal from the Polygonaceae family, known for its high content of flavonoid compounds, particularly rutin. But so far, the mechanisms of the flavonoid transport and storage in Tartary buckwheat (TB) remain largely unexplored. This study focuses on ATP-binding cassette transporters subfamily C (ABCC) members, which are crucial for the biosynthesis and transport of flavonoids in plants. The evolutionary and expression pattern analyses of the ABCC genes in TB identified an ABCC protein gene, FtABCC2, that is highly correlated with rutin synthesis. Subcellular localization analysis revealed that FtABCC2 protein is specifically localized to the vacuole membrane. Heterologous expression of FtABCC2 in Saccharomyces cerevisiae confirmed that its transport ability of flavonoid glycosides such as rutin and isoquercetin, but not the aglycones such as quercetin and dihydroquercetin. Overexpression of FtABCC2 in TB hairy root lines resulted in a significant increase in total flavonoid and rutin content (P < 0.01). Analysis of the FtABCC2 promoter revealed potential cis-acting elements responsive to hormones, cold stress, mechanical injury and light stress. Overall, this study demonstrates that FtABCC2 can efficiently facilitate the transport of rutin into vacuoles, thereby enhancing flavonoids accumulation. These findings suggest that FtABCC2 is a promising candidate for molecular-assisted breeding aimed at developing high-flavonoid TB varieties.

11.
PLoS Comput Biol ; 20(5): e1012067, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709825

RESUMEN

Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Lenguajes de Programación , Genómica/métodos , Genoma/genética , Mapeo Cromosómico/métodos , Humanos
12.
Acupunct Med ; : 9645284241248465, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702866

RESUMEN

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38768497

RESUMEN

Developing thermally activated delayed fluorescence (TADF) near-infrared (NIR) organic light-emitting diodes (OLEDs) based on nondoped emitting layers is intriguing yet challenging, limited by low exciton utilization and notorious concentration quenching. Herein, a facile strategy is proposed to address this issue by incorporating an internal host component onto a traditional donor (D)-acceptor (A)-type red TADF molecule. A proof-of-concept emitter with an internal host is accordingly developed as well as a control one without an internal host. In the case of their monomer states, both emitters exhibit similar emission spectra due to their identical D-A pairs. However, under nondoped conditions, significant improvement in exciton utilization and quenching-resistant features are observed for the molecule with the internal host. The corresponding nondoped OLED yielded a maximum external quantum efficiency of 2.4%, with NIR emission peaking at 765 nm, which was a nearly 10-fold improvement relative to the efficiency based on the control molecule without an internal host. To the best of our knowledge, this result is on par with those of state-of-the art nondoped NIR TADF OLEDs in a similar emission region. These results offer a feasible pathway for the design and development of high-efficiency NIR nondoped OLEDs.

14.
Neoplasia ; 53: 101006, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761505

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are standard first-line treatments for advanced non-small-cell lung cancer (NSCLC) with driver gene mutations. The Response Evaluation Criteria in Solid Tumors (RECIST) are limited in predicting long-term patient benefits. A tumour marker-based evaluation criteria, RecistTM, was used to investigate the potential for assessing targeted-therapy efficacy in lung cancer treatment. METHODS: We retrospectively analysed patients with stage IIIA-IV NSCLC and driver gene mutations, whose baseline tumour marker levels exceeded the pre-treatment cut-off value three-fold and who received TKI-targeted therapy as a first-line treatment. We compared efficacy, progression-free survival (PFS), and overall survival (OS) between RecistTM and RECIST. FINDINGS: The median PFS and OS differed significantly among treatment-response subgroups based on RecistTM but not RECIST. The predicted 1-, 2-, and 3-year disease-progression risk, according to area under the receiver operating characteristic curve, as well as the 1-, 3-, and 5-year mortality risk, differed significantly between RecistTM and RECIST. The median PFS and OS of tmCR according to RecistTM, was significantly longer than (CR+PR) according to RECIST. Imaging analysis revealed that the ΔPFS was 11.27 and 6.17 months in the intervention and non-intervention groups, respectively, suggesting that earlier intervention could extend patients' PFS. INTERPRETATION: RecistTM can assess targeted-therapy efficacy in patients with advanced NSCLC and driver gene mutations, along with tumour marker abnormalities. RecistTM surpasses RECIST in predicting short- and long-term patient benefits, and allows the early identification of patients resistant to targeted drugs, enabling prompt intervention and extending the imaging-demonstrated time to progression.

15.
BMC Musculoskelet Disord ; 25(1): 308, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649919

RESUMEN

BACKGROUND: In traditional surgical procedures, significant discrepancies are often observed between the pre-planned templated implant sizes and the actual sizes used, particularly in patients with congenital hip dysplasia. These discrepancies arise not only in preoperative planning but also in the precision of implant placement, especially concerning the acetabular component. Our study aims to enhance the accuracy of implant placement during Total Hip Arthroplasty (THA) by integrating AI-enhanced preoperative planning with Patient-Specific Instrumentation (PSI). We also seek to assess the accuracy and clinical outcomes of the AI-PSI (AIPSI) group in comparison to a manual control group. METHODS: This study included 60 patients diagnosed with congenital hip dysplasia, randomly assigned to either the AIPSI or manual group, with 30 patients in each. No significant demographic differences between were noted the two groups. A direct anterior surgical approach was employed. Postoperative assessments included X-rays and CT scans to measure parameters such as the acetabular cup anteversion angle, acetabular cup inclination angle, femoral stem anteversion angle, femoral offset, and leg length discrepancy. Functional scores were recorded at 3 days, 1 week, 4 weeks, and 12 weeks post-surgery. Data analysis was conducted using SPSS version 22.0, with the significance level was set at α = 0.05. RESULTS AND CONCLUSION: The AIPSI group demonstrated greater prosthesis placement accuracy. With the aid of PSI, AI-planned THA surgery provides surgeons with enhanced precision in prosthesis positioning. This approach potentially offers greater insights and guidelines for managing more complex anatomical variations or cases.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Displasia del Desarrollo de la Cadera , Impresión Tridimensional , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Artroplastia de Reemplazo de Cadera/instrumentación , Femenino , Masculino , Displasia del Desarrollo de la Cadera/cirugía , Displasia del Desarrollo de la Cadera/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Prótesis de Cadera , Inteligencia Artificial , Resultado del Tratamiento , Diseño de Prótesis
16.
Bioorg Chem ; 147: 107377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653150

RESUMEN

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Diterpenos , Euphorbia , Fármacos Neuroprotectores , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Euphorbia/química , Humanos , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos
17.
Phytomedicine ; 129: 155579, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38574427

RESUMEN

BACKGROUND AND AIMS: Chronic coronary syndrome (CCS) has always been controversial in its therapeutic strategy. Although invasive treatment and optimal medication therapy (OMT) are the most commonly used treatments, doctors continue to debate the best strategy. However, traditional Chinese medicine (TCM) for CCS is effective clinically. METHODS: To identify potentially eligible observational and experimental studies, we searched Pubmed, the Web of Science, and the China National Knowledge Internet. To be eligible, studies had to report with end-of treatment outcomes, such as major adverse cardiac events (MACE), deaths from myocardial infarctions (MI), all-cause mortality, angina, cardiac mortality, the effectiveness rate of electrocardiographs, and the reduction rate of the Nitroglycerin tablets. Risk differences (RDs) and 95 % confidence intervals (95 % CIs) were calculated based on random-effects models or fixed-effects models. Citation screening, data abstraction, risk assessment, and strength-of-evidence grading were completed by 2 independent reviewers. RESULTS: In Section 1 (13 studies, involving 17,287 patients), showed no significant difference between invasive treatment and medication treatment in MACE (RD = -0.04, 95% CI = -0.08 to 0.00, I2 = 76.4 %), all-cause mortality (RD = -0.01, 95%CI = -0.022 to 0.01, I2 = 73.44 %), MI (RD = 0.00, 95%CI = -0.00 to 0.01, I2 = 0.00 %) and cardiac mortality (RD = 0.00, 95 %CI = -0.01 to 0.01, I2 = 34.9 %). In Section 2 (21 studies, including 1820 patients), compared with WM treatment, TCM + WM treatment increased ECG effectiveness by 18 %, angina effectiveness by 20 %, and stopping or reducing Nitroglycerin tablets by 20 %. In Section 3 (25 studies, including 2859 patients) showed that TCM revealed a better electrocardiogram effective rate (RD = 0.10, 95 %CI = 0.05 to 0.14, I2 = 44.7 %) and angina effective rate (RD = 0.12, 95 %CI = 0.09 to 0.15, I2 = 44.9 %). We identified that TCM treatment properties of "Circulating blood and transforming stasis" and application of warm/heat-properties medicines were frequently used in CCS treatment. CONCLUSIONS: TCM treatment has shown superior beneficial cardioprotective in CCS therapy strategy, among which "Circulating blood and transforming stasis" and the application of warm/heat-properties medicine are its characteristics.

18.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602507

RESUMEN

CFAP58 is a testis-enriched gene that plays an important role in the sperm flagellogenesis of humans and mice. However, the effect of CFAP58 on bull semen quality and the underlying molecular mechanisms involved in spermatogenesis remain unknown. Here, we identified two single-nucleotide polymorphisms (rs110610797, A>G and rs133760846, G>T) and one indel (g.-1811_ g.-1810 ins147bp) in the promoter of CFAP58 that were significantly associated with semen quality of bulls, including sperm deformity rate and ejaculate volume. Moreover, by generating gene knockout mice, we found for the first time that the loss of Cfap58 not only causes severe defects in the sperm tail, but also affects the manchette structure, resulting in abnormal sperm head shaping. Cfap58 deficiency causes an increase in spermatozoa apoptosis. Further experiments confirmed that CFAP58 interacts with IFT88 and CCDC42. Moreover, it may be a transported cargo protein that plays a role in stabilizing other cargo proteins, such as CCDC42, in the intra-manchette transport/intra-flagellar transport pathway. Collectively, our findings reveal that CFAP58 is required for spermatogenesis and provide genetic markers for evaluating semen quality in cattle.


Asunto(s)
Análisis de Semen , Semen , Humanos , Bovinos , Masculino , Animales , Ratones , Cabeza del Espermatozoide , Espermatozoides , Ratones Noqueados
19.
JACS Au ; 4(3): 1207-1218, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559717

RESUMEN

Catalyst design for the efficient CO2 reduction reaction (CO2RR) remains a crucial challenge for the conversion of CO2 to fuels. Natural Ni-Fe carbon monoxide dehydrogenase (NiFe-CODH) achieves reversible conversion of CO2 and CO at nearly thermodynamic equilibrium potential, which provides a template for developing CO2RR catalysts. However, compared with the natural enzyme, most biomimetic synthetic Ni-Fe complexes exhibit negligible CO2RR catalytic activities, which emphasizes the significance of effective bimetallic cooperation for CO2 activation. Enlightened by bimetallic synergy, we herein report a dinickel complex, NiIINiII(bphpp)(AcO)2 (where NiNi(bphpp) is derived from H2bphpp = 2,9-bis(5-tert-butyl-2-hydroxy-3-pyridylphenyl)-1,10-phenanthroline) for electrocatalytic reduction of CO2 to CO, which exhibits a remarkable reactivity approximately 5 times higher than that of the mononuclear Ni catalyst. Electrochemical and computational studies have revealed that the redox-active phenanthroline moiety effectively modulates the electron injection and transfer akin to the [Fe3S4] cluster in NiFe-CODH, and the secondary Ni site facilitates the C-O bond activation and cleavage through electron mediation and Lewis acid characteristics. Our work underscores the significant role of bimetallic cooperation in CO2 reduction catalysis and provides valuable guidance for the rational design of CO2RR catalysts.

20.
Nanomaterials (Basel) ; 14(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607153

RESUMEN

In recent years, fluoride pollution in water is a problem that has attracted much attention from researchers. The removal of fluoride-containing wastewater by adsorption with metal oxide as an adsorbent is the most common treatment method. Based on this, the effect of the doping ratio of La2O3, Fe2O3, and Al2O3 on the fluoride-removal performance was discussed by constructing a phase diagram. In this study, the adsorption mechanism of nanocrystalline lanthanum oxide terpolymer was investigated by density functional theory calculation and experiment. The optimal pH condition selected in the experiment was three, and the adsorption kinetics of fluoride ions were more consistent with the quasi-second-order kinetic model. The adsorption thermodynamics was more consistent with the Langmuir model. When the La-Fe-Al ternary composite oxides achieved the optimal adsorption efficiency for fluoride ions, the mass synthesis ratio was Al2O3:(Fe2O3:La2O3 = 1:2) = 1:100, resulting in a fluoride ion removal rate of up to 99.78%. Density functional calculations revealed that the La-Fe-Al ternary composite oxides had three important adsorption sites for La, Fe, and Al. Among them, the adsorption capacity for HF was Fe2O3 > La2O3 > Al2O3, and for F- was La2O3 > Al2O3 > Fe2O3. This provided good guidance for designing adsorbents to remove fluoride.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA