Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 664: 329-337, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479269

RESUMEN

Co9S8 has been extensively studied as a promising catalyst for water electrolysis. Doping Co9S8 with Fe improves its oxygen evolution reaction (OER) performance by regulating the catalyst self-reconfigurability and enhancing the absorption capacity of OER intermediates. However, the poor alkaline hydrogen evolution reaction (HER) properties of Co9S8 limit its application in bifunctional water splitting. Herein, we combined Fe doping and sulfur vacancy engineering to synergistically enhance the bifunctional water-splitting performance of Co9S8. The as-synthesized Co6Fe3S8 catalyst exhibited excellent OER and HER characteristics with low overpotentials of 250 and 84 mV, respectively. It also resulted in the low Tafel slopes of 135 mV dec-1 for the OER and 114 mV dec-1 for the HER. A two-electrode electrolytic cell with Co6Fe3S8 used as both the cathode and anode produced a current density of 10 mA cm-2 at a low voltage of only 1.48 V, maintaining high stability for 100 h. The results of in/ex-situ experiments indicated that the OER process induced electrochemical reconfiguration, forming CoOOH/FeOOH active species on the catalyst surface to enhance its OER performance. Density functional theory (DFT) simulations revealed that Fe doping and the presence of unsaturated coordination metal sites in Co6Fe3S8 promoted H2O and H* adsorption for the HER. The findings of this study can help develop a strategy for designing highly efficient bifunctional water splitting electrocatalysts.

2.
Small Methods ; 7(6): e2201728, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36995022

RESUMEN

Due to the high theoretical energy density, low cost, and rich abundance of sodium and sulfur, room-temperature sodium-sulfur (RT Na-S) batteries are investigated as the promising energy storage system. However, the inherent insulation of the S8 , the dissolution and shuttle of the intermediate sodium polysulfides (NaPSs), and especially the sluggish conversion kinetics, restrict the commercial application of the RT Na-S batteries. To address these issues, various catalysts are developed to immobilize the soluble NaPSs and accelerate the conversion kinetics. Among them, the polar catalysts display impressive performance. Polar catalysts not only can significantly accelerate (or alter) the redox process, but also can adsorb polar NaPSs through polar-polar interaction because of their intrinsic polarity, thus inhibiting the notorious shuttle effect. Herein, the recent advances in the electrocatalytic effect of polar catalysts on the manipulation of S speciation pathways in RT Na-S batteries are reviewed. Furthermore, challenges and research directions to realize rapid and reversible sulfur conversion are put forward to promote the practical application of RT Na-S batteries.

3.
Nanomicro Lett ; 14(1): 193, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149584

RESUMEN

The latest view suggests the inactive core, surface pulverization, and polysulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries (SIBs). Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough. In this work, erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin polyaniline (PANI) were synthesized through one-step self-assembly growth, followed by in situ polymerization of aniline. When CuS@PANI is used as anode electrode in SIBs, it delivers high capacity, ultrahigh rate capability (500 mAh g-1 at 0.1 A g-1, and 214.5 mAh g-1 at 40 A g-1), and superior cycling life of over 7500 cycles at 20 A g-1. A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism. The PANI swollen with electrolyte can stabilize solid electrolyte interface layer, benefit the ion transport/charge transfer at the PANI/electrolyte interface, and restrain the size growth of Cu particles in confined space. Moreover, finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion, suppresses the surface pulverization, and traps the polysulfide.

4.
ACS Nano ; 7(12): 10482-91, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24251905

RESUMEN

ZnO twin-spheres topologically exposed in ±(001) polar facets have been successfully produced on a large scale. The fragmentary and hexagonal ±(001) facets of ZnO tilt and assemble gradually for 8-12 generations to form supercrystals. The surfactant effect on the formation of ZnO supercrystals reveals that their structure stepwise evolves from prisms to dumbbells to twin-spheres exposed in ±(001) facets and eventually to twin-spheres covered with dots. A hollow ring around a prism, which connects two hemispheres of the supercrystals, is finally sealed inside each of the twin-spheres. Based on the experimental observations, a stepwise self-assembly mechanism is proposed to understand the formation of the supercrystals. It is also observed that the ZnO twin-spheres exhibit anisotropic blue emission in intensity attributed to their special surfaces exposed in ±(001) facets. Novel devices could be designed and fabricated through carefully tailoring the microstructure of ZnO supercrystals.

5.
ACS Appl Mater Interfaces ; 4(8): 3797-804, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22853192

RESUMEN

Porous and single crystalline ZnO nanosheets, which were synthesized by annealing hydrozincite Zn(5)(CO(3))(2)(OH)(6) nanoplates produced with a water/ethylene glycol solvothermal method, are used as building blocks to construct functional Pd-ZnO nanoarchitectures together with Pd nanoparticles based on a self-assembly approach. Chemical sensing performances of the ZnO nanosheets were investigated carefully before and after their surface modification with Pd nanoparticles. It was found that the chemical sensors made with porous ZnO nanosheets exhibit high selectivity and quick response for detecting acetone, because of the 2D ZnO nanocrystals exposed in (100) facets at high percentage. The performances of the acetone sensors can be further improved dramatically, after the surfaces of ZnO nanosheets are modified with Pd nanoparticles. Novel acetone sensors with enhanced response, selectivity and stability have been fabricated successfully by using nanoarchitectures consisting of ZnO nanosheets and Pd nanoparticles.


Asunto(s)
Acetona/química , Nanopartículas del Metal/química , Paladio/química , Óxido de Zinc/química , Cristalización , Ensayo de Materiales , Microscopía Electrónica de Transmisión/métodos , Modelos Químicos , Nanopartículas/química , Nanoestructuras/química , Nanotecnología/métodos , Porosidad , Propiedades de Superficie , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...