Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 758727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925059

RESUMEN

In this study, we present a non-invasive solution to identify patients with coronary artery disease (CAD) defined as ⩾50% stenosis in at least one coronary artery. The solution is based on the analysis of linear acceleration (seismocardiogram, SCG) and angular velocity (gyrocardiogram, GCG) of the heart recorded in the x, y, and z directional axes from an accelerometer/gyroscope sensor mounted on the sternum. The database was collected from 310 individuals through a multicenter study. The time-frequency features extracted from each SCG and GCG data channel were fed to a one-dimensional Convolutional Neural Network (1D CNN) to train six separate classifiers. The results from different classifiers were later fused to estimate the CAD risk for each participant. The predicted CAD risk was validated against related results from angiography. The SCG z and SCG y classifiers showed better performance relative to the other models (p < 0.05) with the area under the curve (AUC) of 91%. The sensitivity range for CAD detection was 92-94% for the SCG models and 73-87% for the GCG models. Based on our findings, the SCG models achieved better performance in predicting the CAD risk compared to the GCG models; the model based on the combination of all SCG and GCG classifiers did not achieve higher performance relative to the other models. Moreover, these findings showed that the performance of the proposed 3-axial SCG/GCG solution based on recordings obtained during rest was comparable, or better than stress ECG. These data may indicate that 3-axial SCG/GCG could be used as a portable at-home CAD screening tool.

2.
Clin Neurophysiol ; 130(8): 1271-1279, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31163373

RESUMEN

OBJECTIVE: To compare the effects of active assisted wrist extension training, using a robotic exoskeleton (RW), with simultaneous 5 Hz (rTMS + RW) or Sham rTMS (Sham rTMS + RW) over the ipsilesional extensor carpi radialis motor cortical representation, on voluntary wrist muscle activation following stroke. METHODS: The two training conditions were completed at least one week apart in 13 participants >1-year post-stroke. Voluntary wrist extensor muscle activation (motor unit (MU) recruitment thresholds and firing rate modulation in a ramp-hold handgrip task), ipsilesional corticospinal excitability (motor evoked potential [MEP] amplitude) and transcallosal inhibition were measured Pre- and Post-training. RESULTS: For MUs active both Pre and Post training, greater reductions in recruitment thresholds were found Post rTMS + RW training (p = 0.0001) compared to Sham rTMS + RW (p = 0.16). MU firing rate modulation increased following both training conditions (p = 0.001). Ipsilesional MEPs were elicited Pre and Post in only 5/13 participants. No significant changes were seen in ipsilesional corticospinal excitability and transcallosal inhibition measures (p > 0.05). CONCLUSIONS: Following a single rTMS + RW session in people >1-year post-stroke, changes were found in voluntary muscle activation of wrist extensor muscles. Alterations in ipsilesional corticospinal or interhemispheric excitability were not detected. SIGNIFICANCE: The effects of rTMS + RW on muscle activation warrant further investigation as post-stroke rehabilitation strategy.


Asunto(s)
Terapia Pasiva Continua de Movimiento/métodos , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Magnética Transcraneal/métodos , Muñeca/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Pasiva Continua de Movimiento/instrumentación , Músculo Esquelético/fisiopatología , Reclutamiento Neurofisiológico , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación
3.
J Neuroeng Rehabil ; 11: 2, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24397984

RESUMEN

BACKGROUND: Body motion data registered by wearable sensors can provide objective feedback to patients on the effectiveness of the rehabilitation interventions they undergo. Such a feedback may motivate patients to keep increasing the amount of exercise they perform, thus facilitating their recovery during physical rehabilitation therapy. In this work, we propose a novel wearable and affordable system which can predict different postures of the upper-extremities by classifying force myographic (FMG) signals of the forearm in real-time. METHODS: An easy to use force sensor resistor (FSR) strap to extract the upper-extremities FMG signals was prototyped. The FSR strap was designed to be placed on the proximal portion of the forearm and capture the activities of the main muscle groups with eight force input channels. The non-kernel based extreme learning machine (ELM) classifier with sigmoid based function was implemented for real-time classification due to its fast learning characteristics. A test protocol was designed to classify in real-time six upper-extremities postures that are needed to successfully complete a drinking task, which is a functional exercise often used in constraint-induced movement therapy. Six healthy volunteers participated in the test. Each participant repeated the drinking task three times. FMG data and classification results were recorded for analysis. RESULTS: The obtained results confirmed that the FMG data captured from the FSR strap produced distinct patterns for the selected upper-extremities postures of the drinking task. With the use of the non-kernel based ELM, the postures associated to the drinking task were predicted in real-time with an average overall accuracy of 92.33% and standard deviation of 3.19%. CONCLUSIONS: This study showed that the proposed wearable FSR strap was able to detect eight FMG signals from the forearm. In addition, the implemented ELM algorithm was able to correctly classify in real-time six postures associated to the drinking task. The obtained results therefore point out that the proposed system has potential for providing instant feedback during functional rehabilitation exercises.


Asunto(s)
Inteligencia Artificial , Retroalimentación Sensorial/fisiología , Antebrazo , Modalidades de Fisioterapia/instrumentación , Adulto , Electromiografía , Humanos , Masculino , Adulto Joven
4.
Biomed Eng Online ; 9: 41, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20796304

RESUMEN

BACKGROUND: Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopenia. While using sEMG for position control, estimation of the intended torque of the user could also provide sufficient information for an effective force control of the hand prosthesis or assistive device. This paper presents the use of pattern recognition to estimate the torque applied by a human wrist and its real-time implementation to control a novel two degree of freedom wrist exoskeleton prototype (WEP), which was specifically developed for this work. METHODS: Both sEMG data from four muscles of the forearm and wrist torque were collected from eight volunteers by using a custom-made testing rig. The features that were extracted from the sEMG signals included root mean square (rms) EMG amplitude, autoregressive (AR) model coefficients and waveform length. Support Vector Machines (SVM) was employed to extract classes of different force intensity from the sEMG signals. After assessing the off-line performance of the used classification technique, the WEP was used to validate in real-time the proposed classification scheme. RESULTS: The data gathered from the volunteers were divided into two sets, one with nineteen classes and the second with thirteen classes. Each set of data was further divided into training and testing data. It was observed that the average testing accuracy in the case of nineteen classes was about 88% whereas the average accuracy in the case of thirteen classes reached about 96%. Classification and control algorithm implemented in the WEP was executed in less than 125 ms. CONCLUSIONS: The results of this study showed that classification of EMG signals by separating different levels of torque is possible for wrist motion and the use of only four EMG channels is suitable. The study also showed that SVM classification technique is suitable for real-time classification of sEMG signals and can be effectively implemented for controlling an exoskeleton device for assisting the wrist.


Asunto(s)
Miembros Artificiales , Electromiografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Muñeca/fisiología , Humanos , Movimiento , Rotación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...