Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(21): e202401051, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38469954

RESUMEN

Sodium-ion batteries (SIBs) present a promising avenue for next-generation grid-scale energy storage. However, realizing all-climate SIBs operating across a wide temperature range remains a challenge due to the poor electrolyte conductivity and instable electrode interphases at extreme temperatures. Here, we propose a comprehensively balanced electrolyte by pairing carbonates with a low-freezing-point and low-polarity ethyl propionate solvent which enhances ion diffusion and Na+-desolvation kinetics at sub-zero temperatures. Furthermore, the electrolyte leverages a combinatorial borate- and nitrile-based additive strategy to facilitate uniform and inorganic-rich electrode interphases, ensuring excellent rate performance and cycle stability over a wide temperature range from -45 °C to 60 °C. Notably, the Na||sodium vanadyl phosphate cell delivers a remarkable capacity of 105 mAh g-1 with a high rate of 2 C at -25 °C. In addition, the cells exhibit excellent cycling stability over a wide temperature range, maintaining a high capacity retention of 84.7 % over 3,000 cycles at 60 °C and of 95.1 % at -25 °C over 500 cycles. The full cell also exhibits impressive cycling performance over a wide temperature range. This study highlights the critical role of electrolyte and interphase engineering for enabling SIBs that function optimally under diverse and extreme climatic environments.

2.
Nat Commun ; 15(1): 596, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238327

RESUMEN

Molten salt aluminum-sulfur batteries are based exclusively on resourcefully sustainable materials, and are promising for large-scale energy storage owed to their high-rate capability and moderate energy density; but the operating temperature is still high, prohibiting their applications. Here we report a rapid-charging aluminium-sulfur battery operated at a sub-water-boiling temperature of 85 °C with a tamed quaternary molten salt electrolyte. The quaternary alkali chloroaluminate melt - possessing abundant electrochemically active high-order Al-Cl clusters and yet exhibiting a low melting point - facilitates fast Al3+ desolvation. A nitrogen-functionalized porous carbon further mediates the sulfur reaction, enabling the battery with rapid-charging capability and excellent cycling stability with 85.4% capacity retention over 1400 cycles at a charging rate of 1 C. Importantly, we demonstrate that the asymmetric sulfur reaction mechanism that involves formation of polysulfide intermediates, as revealed by operando X-ray absorption spectroscopy, accounts for the high reaction kinetics at such temperature wherein the thermal management can be greatly simplified by using water as the heating media.

3.
Adv Mater ; 36(15): e2310051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145580

RESUMEN

Sodium-ion batteries (SIBs) hold great promise for next-generation grid-scale energy storage. However, the highly instable electrolyte/electrode interphases threaten the long-term cycling of high-energy SIBs. In particular, the instable cathode electrolyte interphase (CEI) at high voltage causes persistent electrolyte decomposition, transition metal dissolution, and fast capacity fade. Here, this work proposes a balanced principle for the molecular design of SIB electrolytes that enables an ultra-thin, homogeneous, and robust CEI layer by coupling an intrinsically oxidation-stable succinonitrile solvent with moderately solvating carbonates. The proposed electrolyte not only shows limited anodic decomposition thus leading to a thin CEI, but also suppresses dissolution of CEI components at high voltage. Consequently, the tamed electrolyte/electrode interphases enable extremely stable cycling of Na3V2O2(PO4)2F (NVOPF) cathodes with outstanding capacity retention (>90%) over 3000 cycles (8 months) at 1 C with a high charging voltage of 4.3 V. Further, the NVOPF||hard carbon full cell shows stable cycling over 500 cycles at 1 C with a high average Coulombic efficiency (CE) of 99.6%. The electrolyte also endows high-voltage operation of SIBs with great temperature adaptability from -25 to 60 °C, shedding light on the essence of fundamental electrolyte design for SIBs operating under harsh conditions.

4.
Nat Commun ; 14(1): 3909, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400451

RESUMEN

Conventional solid-to-solid conversion-type cathodes in batteries suffer from poor diffusion/reaction kinetics, large volume changes and aggressive structural degradation, particularly for rechargeable aluminium batteries (RABs). Here we report a class of high-capacity redox couples featuring a solution-to-solid conversion chemistry with well-manipulated solubility as cathodes-uniquely allowed by using molten salt electrolytes-that enable fast-charging and long-lived RABs. As a proof-of-concept, we demonstrate a highly reversible redox couple-the highly soluble InCl and the sparingly soluble InCl3-that exhibits a high capacity of about 327 mAh g-1 with negligible cell overpotential of only 35 mV at 1 C rate and 150 °C. The cells show almost no capacity fade over 500 cycles at a 20 C charging rate and can sustain 100 mAh g-1 at 50 C. The fast oxidation kinetics of the solution phase upon initiating the charge enables the cell with ultrafast charging capability, whereas the structure self-healing via re-forming the solution phase at the end of discharge endows the long-term cycling stability. This solution-to-solid mechanism will unlock more multivalent battery cathodes that are attractive in cost but plagued by poor reaction kinetics and short cycle life.

6.
Small ; 18(43): e2107174, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35775419

RESUMEN

Calcium-based batteries have promising advantages over multivalent ion batteries. However, the fabrication of highly efficient calcium batteries is limited by the quality of available cathode materials, which motivates the exploration of electrodes that can enable reversible, stable Ca2+ intercalation. Herein, layered vanadium oxide Mgx V2 O5 ·nH2 O is used as a calcium battery cathode, and it exhibits a high capacity of 195.5 mA h g-1 at 20 mA g-1 and an outstanding cycling life (93.6% capacity retention after 2500 cycles at 1 A g-1 ). Combining theoretical analysis and experimental design, a series of layered oxides (Mx V2 O5 ·nH2 O, M = Mg, Ca, Sr) is selected as a model system to identify the Ca storage mechanism. It is found that the hydrated alkaline earth metal ions in the vanadium-based layered oxide interlayers play a critical role as pillared stabilizers to facilitate Ca2+ insertion/extraction. Compared with Ca2+ and Sr2+ , the presence of Mg2+ provides vanadium oxides with a rigid framework that allows for minimized volume fluctuation (a tiny variation of ≈0.15 Å of the interlayer spacing). Such an understanding of the Ca storage mechanism is a key step in the rational design and selection of materials for calcium batteries to achieve a high capacity and long cycle life.

7.
Angew Chem Int Ed Engl ; 61(31): e202206717, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35610667

RESUMEN

Zinc-ion batteries (ZIB) present great potential in energy storage due to low cost and high safety. However, the poor stability, dendrite growth, and narrow electrochemical window limit their practical application. Herein, we develop a new eutectic electrolyte consisting of ethylene glycol (EG) and ZnCl2 for dendrite-free and long-lifespan ZIBs. The EG molecules participate in the Zn2+ solvation via coordination and hydrogen-bond interactions. Optimizing the ZnCl2 /EG molar ratio (1 : 4) can strengthen intermolecular interactions to form [ZnCl(EG)]+ and [ZnCl(EG)2 ]+ cations. The dissociation-reduction of these complex cations enables the formation of a Cl-rich organic-inorganic hybrid solid electrolyte interphase film on a Zn anode, realizing highly reversible Zn plating/stripping with long-term stability of ≈3200 h. Furthermore, the polyaniline||Zn cell manifests decent cycling performance with ≈78 % capacity retention after 10 000 cycles, and the assembled pouch cell demonstrates high safety and stable capacity. This work opens an avenue for developing eutectic electrolytes for high-safety and practical ZIBs.

8.
ACS Nano ; 16(5): 7291-7300, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35445597

RESUMEN

Considered as an imperative alternative to the commercial LiFePO4 battery, the potassium metal battery possesses great potential in grid-scale energy storage systems due to the low cost, low standard redox potential, and high abundance of potassium. The potassium dendrite growth, large volume change, and unstable solid electrolyte interphase (SEI) on the potassium metal anode have, however, hindered its applications. Although conductive scaffolds coupling with potassium metal have been widely proposed to address the above issues, it remains challenging to fabricate a uniform composite with uncompromised capacity. Herein, we propose a facile and efficient strategy to construct dendrite-free and practical carbon-based potassium composite anodes via amine functionalization of the carbon scaffolds that enables fast molten potassium infusion within several seconds. On the basis of experiments and theoretical calculations, we show that highly potassiophilic amine groups immediately transform carbon scaffolds from nonwetting to wetting to postassium. Our carbon-cloth-based potassium composite anode (K@CC) can accommodate volume fluctuation, provide abundant nucleation sites, and lower the local current density, achieving nondendritic morphology with a stable SEI. The fabricated K0.7Mn0.7Ni0.3O2|K@CC full cell displays excellent rate capability and an ultralong lifespan over 8000 cycles (68.5% retention) at a high current of 1 A g-1.

9.
Chem Commun (Camb) ; 56(18): 2751-2754, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32022005

RESUMEN

A novel titanium-silicon MOF precursor was first designed and constructed via a facile solvothermal process. After subsequent pyrolysis, the derived ternary TiO2/SiOx@C nanocomposite exhibited superior lithium storage performances, which was attributed to their all-in-one architecture of synergistic components, including stable-cycling nanostructured TiO2, high-capacity SiOx and high-conductivity carbon matrix.

10.
Sci Bull (Beijing) ; 63(1): 46-53, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36658917

RESUMEN

Li-rich layered oxide materials have attracted increasing attention because of their high specific capacity (>250 mAh g-1). However, these materials typically suffer from poor cycling stability and low rate performance. Herein, we propose a facile and novel metal-organic-framework (MOF) shell-derived surface modification strategy to construct NiCo nanodots decorated (∼5 nm in diameter) carbon-confined Li1.2Mn0.54Ni0.13Co0.13O2 nanoparticles (LLO@C&NiCo). The MOF shell is firstly formed on the surface of as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 nanoparticles via low-pressure vapor superassembly and then is in situ converted to the NiCo nanodots decorated carbon shell after subsequent controlled pyrolysis. The obtained LLO@C&NiCo cathode exhibits enhanced cycling and rate capability with a capacity retention of 95% after 100 cycles at 0.4 C and a high capacity of 159 mAh g-1 at 5 C, respectively, compared with those of LLO (75% and 105 mAh g-1). The electrochemical impedance spectroscopy and selected area electron diffraction analyses after cycling demonstrate that the thin C&NiCo shell can endow LLO with high electronic conductivity and structural stability, indicating the undesired formation of the spinel phase initiated from the particle surface is efficiently suppressed. Therefore, this presented strategy may open a new avenue on the design of high-performance electrode materials for energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA