RESUMEN
BACKGROUND: Liver kinase B1 (LKB1) is frequently mutated in lung adenocarcinoma, and its loss contributes to tumor progression. METHODS: To identify LKB1 downstream genes that promote lung adenocarcinoma aggressiveness, we performed bioinformatical analysis using publicly available datasets. RESULTS: Rab3B was upregulated in LKB1-depleted lung adenocarcinoma cells and suppressed by LKB1 overexpression. CREB protein was enriched at the promoter of Rab3B in lung cancer cells. Silencing of CREB abrogated the upregulation of Rab3B upon LKB1 loss. Immunohistochemistry revealed the elevated expression of Rab3B in lung adenocarcinomas relative to adjacent normal tissues. Upregulation of Rab3B was significantly associated with lymph node metastasis, advanced tumor stage, and reduced overall survival in lung adenocarcinoma patients. Knockdown of Rab3B suppressed and overexpression of Rab3B promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells in vitro. In a mouse xenograft model, Rab3B depletion restrained and Rab3B overexpression augmented the growth of lung adenocarcinoma tumors. Mechanistically, Rab3B interacted with DDX6 and enhanced its protein stability. Ectopic expression of DDX6 significantly promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells. DDX6 knockdown phenocopied the effects of Rab3B depletion on lung adenocarcinoma cells. Additionally, DDX6 overexpression partially rescued the aggressive phenotype of Rab3B-depleted lung adenocarcinoma cells. CONCLUSION: LKB1 deficiency promotes Rab3B upregulation via a CREB-dependent manner. Rab3B interacts with and stabilizes DDX6 protein to accelerate lung adenocarcinoma progression. The Rab3B-DDX6 axis may be potential therapeutic target for lung adenocarcinoma.
Asunto(s)
Adenocarcinoma del Pulmón , ARN Helicasas DEAD-box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estabilidad ProteicaRESUMEN
Background: Colorectal cancer is a highly aggressive malignant tumor that primarily affects the digestive system. It is frequently diagnosed at an advanced stage. Cuproptosis is a copper-dependent form cell death mechanism, distinct from all other known pathways underlying cell death, tumor progression, prognosis, and immune response. Although the role of cuproptosis in colorectal cancer has been investigated over time, there is still an urgent need to explore new methods and insights to understand its potential function. Methods: The Gene Expression Omnibus and The Cancer Genome Atlas gene expression data were systematically explored to investigate the role of cuproptosis in colon adenocarcinoma. The weighted gene coexpression network analysis was used to construct a gene coexpression network and identify the critical module and cuproptosis-related genes correlated with colon adenocarcinoma prognosis. A cuproptosis-related genes prognostic signature for colon adenocarcinoma was identified and validated. To validate the identified gene signature, quantitative reverse transcription-polymerase chain reaction was performed. Cell proliferation assays were analyzed by CCK8 and cell cycle detection. In addition, reactive oxygen species assay was also analyzed. Results: Five hub cuproptosis-related genes (Dihydrolipoamide S-acetyltransferase, Cyclin-dependent kinase inhibitor 2A, ATOX1, VEGFA, and ULK1) were screened and a prognostic risk model for predicting overall survival was established based on these genes. The model was successfully tested in the validation cohort and the GEPIA database. Colon adenocarcinoma patients were categorized into high-risk and low-risk groups based on risk scores. The study revealed that patients with higher risk scores were more likely to have a poor prognosis. Moreover, Dihydrolipoamide S-acetyltransferase was a tumor suppressor gene that can induce cell death and affected the redox reactions in the colon cancer cell line. Conclusions: These findings suggest that the newly identified 5-gene signature may serve as a more reliable prognostic factor than clinical factors such as age and stage of disease. These findings offer a theoretical foundation for further investigation into potential cuproptosis-related biomarkers for predicting colon adenocarcinoma prognosis in the future.
Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Neoplasias del Colon , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Humanos , Pronóstico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/mortalidad , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Proliferación Celular/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Estimación de Kaplan-Meier , MasculinoRESUMEN
PURPOSE: The goal of this study was to develop an imaging probe-IRDye-680RD-OX40 mAb-that can be used for noninvasive imaging and optical imaging of rheumatoid arthritis (RA). OX40/OX40 ligand (OX40L) interactions have been shown to exert potent costimulatory effects on T cell activation. Detectable change in T cell activation profiles was observed in early RA. METHODS: OX40 expression pattern was analyzed by flow cytometry. N-hydroxysuccinimide (NHS) esters are used to label proteins selectively on free amino groups of OX40 monoclonal antibody (mAb). Characterization of IRDye-680RD-OX40 mAb was measured and a fluorescence spectrum gathered. Cell binding assay was also performed between activated and naïve murine T cells. Longitudinal near-infrared fluorescence (NIRF) imaging of the probe was performed on day 8, day 9, day 10, and day 11 of adjuvant-induced arthritis (AIA) mouse model. Paw thickness and body weight were compared between the OX40 mAb and IgG injection groups. RESULTS: NIRF imaging with IRDye-680RD-OX40 mAb revealed strong OX40-positive responses with high specificity. Flow analysis showed that OX40 was specifically expressed on the surface of T cells in RP and spleen of AIA model. The AIA group was significantly differentiated from the control group at all time points with imaging monitoring. The region of interest (ROI) was in line with ex vivo imaging and biodistribution study. This study highlights the potential utility of the OX40 NIRF imaging as a new strategy for RA prediction and T cell monitoring. CONCLUSION: The results provide evidence that IRDye-680RD-OX40 mAb detects organized T cells activation in early RA. The optical probe was capable of detection of RA pathogenesis. It identified transcriptional responses to RA that mediate its immune functions. Thus, it may be an ideal probe for RA imaging.
Asunto(s)
Artritis Reumatoide , Receptores del Factor de Necrosis Tumoral , Ratones , Animales , Receptores del Factor de Necrosis Tumoral/metabolismo , Glicoproteínas de Membrana/metabolismo , Factores de Necrosis Tumoral/metabolismo , Receptores OX40/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Distribución Tisular , Linfocitos T/metabolismo , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/metabolismo , Anticuerpos Monoclonales/metabolismoRESUMEN
BACKGROUND: Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS: In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS: We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS: Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.
RESUMEN
PURPOSE: We first developed a 4-1BB-targeted optical probe, named IRDye-680RD-4-1BB mAb (monoclonal antibody), and evaluated its value for the detection of 4-1BB+ activated T cells in vivo as well as the diagnosis of rheumatoid arthritis (RA) in an adjuvant-induced arthritis (AIA) mouse model. METHODS: The 4-1BB expression pattern was analysed by flow cytometry and immunofluorescence (IF) staining. The 4-1BB mAb was conjugated with IRDye-680RD NHS ester, and characterized via fluorescence spectrum. A cell-binding assay was also performed to assess the interaction of this probe with activated and naïve murine T cells. Longitudinal near-infrared fluorescence (NIRF) imaging of the probe was performed at 6, 24, 48, 72, and 96 h after probe administration. RESULTS: 4-1BB expression was highly upregulated during the pathogenesis of RA. Good colocalization was also observed between CD3 and 4-1BB by IF staining and t-SNE (T-distributed stochastic neighbour embedding) analysis, which indicates that 4-1BB was mainly expressed on T cells. Compared to the control group, a significantly higher signal was observed in the right hind paw (RP) of mice with AIA at all time points. The ex vivo biodistribution study results were consistent with the in vivo NIRF imaging results, which validated the accuracy of the region of interest (ROI) measurements. The sensitivity against 100% specificity observed in the receiver operator characteristic (ROC) curve analysis could distinguish the AIA group from the control group at all time points, indicating the value of IRDye-680RD-4-1BB mAb for RA diagnosis. CONCLUSION: We successfully developed a novel optical imaging probe, named IRDye-680RD-4-1BB mAb, for tracking 4-1BB+ activated T cells in vivo, and 4-1BB NIRF imaging is a promising strategy for noninvasively detecting the pathogenesis of RA.
Asunto(s)
Artritis , Linfocitos T , Animales , Ratones , Distribución Tisular , Anticuerpos MonoclonalesRESUMEN
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.
Asunto(s)
Melanoma , Nanopartículas , Anticuerpos , Antígenos CD40 , Citocinas , Humanos , Hidrogeles/química , Polímeros , Tomografía Computarizada por Rayos XRESUMEN
Allogeneic hematopoietic cell transplantation (HCT) is a well-established and potentially curative treatment for a broad range of hematological diseases, bone marrow failure states, and genetic disorders. Acute graft-versus-host disease (GvHD), mediated by donor T cells attacking host tissues, still represents a major cause of morbidity and mortality following allogeneic HCT. Current approaches to diagnosis of gastrointestinal acute GvHD rely on clinical and pathological criteria that manifest at late stages of disease. New strategies allowing for GvHD prediction and diagnosis, prior to symptom onset, are urgently needed. Noninvasive antibody-based positron emission tomography (PET) (immunoPET) imaging of T-cell activation post-allogeneic HCT is a promising strategy toward this goal. In this work, we identified inducible T-cell costimulator (ICOS) as a potential immunoPET target for imaging activated T cells during GvHD. We demonstrate that the use of the Zirconium-89-deferoxamine-ICOS monoclonal antibody PET tracer allows in vivo visualization of donor T-cell activation in target tissues, namely the intestinal tract, in a murine model of acute GvHD. Importantly, we demonstrate that the Zirconium-89-deferoxamine-ICOS monoclonal antibody PET tracer does not affect GvHD pathogenesis or the graft-versus-tumor (GvT) effect of the transplant procedure. Our data identify ICOS immunoPET as a promising strategy for early GvHD diagnosis prior to the appearance of clinical symptoms.
Asunto(s)
Enfermedad Injerto contra Huésped , Proteína Coestimuladora de Linfocitos T Inducibles , Linfocitos T , Animales , Anticuerpos Monoclonales , Deferoxamina , Diagnóstico Precoz , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Proteína Coestimuladora de Linfocitos T Inducibles/análisis , Ratones , Tomografía de Emisión de Positrones , Trasplante Homólogo/efectos adversosRESUMEN
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
RESUMEN
T lymphocytes are key mediators of the adaptive immune response. Inappropriate or imbalanced T-cell responses are underlying factors in cancer progression, allergy, and other immune disorders. Monitoring the spatiotemporal dynamics of T cells and their functional status has the potential to provide unique biologic insights into health and disease. Noninvasive PET imaging represents an ideal whole-body modality for achieving this goal. With the appropriate PET imaging probes, T-cell dynamics can be monitored in vivo with high specificity and sensitivity. Herein, we provide a comprehensive overview of the applications of this state-of-the-art T-cell PET imaging toolbox and the potential it has to improve the clinical management of cancer immunotherapy and T-cell-driven diseases. We also discuss future directions and prospects for clinical translation.
Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia/métodos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodosRESUMEN
Background: The successful application of subthalamic nucleus (STN) deep brain stimulation (DBS) surgery relies mostly on optimal lead placement, whereas the major challenge is how to precisely localize STN. Microstimulation, which can induce differentiating inhibitory responses between STN and substantia nigra pars reticulata (SNr) near the ventral border of STN, has indicated a great potential of breaking through this barrier. Objective: This study aims to investigate the feasibility of localizing the boundary between STN and SNr (SSB) using microstimulation and promote better lead placement. Methods: We recorded neurophysiological data from 41 patients undergoing STN-DBS surgery with microstimulation in our hospital. Trajectories with typical STN signal were included. Microstimulation was applied near the bottom of STN to determine SSB, which was validated by the imaging reconstruction of DBS leads. Results: In most trajectories with microstimulation (84.4%), neuronal firing in STN could not be inhibited by microstimulation, whereas in SNr long inhibition was observed following microstimulation. The success rate of localizing SSB was significantly higher in trajectories with microstimulation than those without. Moreover, results from imaging reconstruction and intraoperative neurological assessments demonstrated better lead location and higher therapeutic effectiveness in trajectories with microstimulation and accurately identified SSB. Conclusion: Microstimulation on microelectrode recording is an effective approach to localize the SSB. Our data provide clinical evidence that microstimulation can be routinely employed to achieve better lead placement.
RESUMEN
PURPOSE: Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN: A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS: ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS: The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.
Asunto(s)
Glioblastoma , Animales , Línea Celular Tumoral , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Humanos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Linfocitos T/patologíaRESUMEN
Diagnosis of organ transplant rejection relies upon biopsy approaches to confirm alloreactive T cell infiltration in the graft. Immune molecular monitoring is under investigation to screen for rejection, though these techniques have suffered from low specificity and lack of spatial information. ImmunoPET utilizing antibodies conjugated to radioisotopes has the potential to improve early and accurate detection of graft rejection. ImmunoPET is capable of noninvasively visualizing the dynamic distribution of cells expressing specific immune markers in the entire body over time. In this work, we identify and characterize OX40 as a surrogate biomarker for alloreactive T cells in organ transplant rejection and monitor its expression by utilizing immunoPET. In a dual murine heart transplant model that has both syngeneic and allogeneic hearts engrafted in bilateral ear pinna on the recipients, OX40 immunoPET clearly depicted alloreactive T cells in the allograft and draining lymph node that were not observed in their respective isograft counterparts. OX40 immunoPET signals also reflected the subject's immunosuppression level with tacrolimus in this study. OX40 immunoPET is a promising approach that may bridge molecular monitoring and morphological assessment for improved transplant rejection diagnosis.
Asunto(s)
Rechazo de Injerto , Trasplante de Corazón/efectos adversos , Monitorización Inmunológica/métodos , Ligando OX40 , Tomografía de Emisión de Positrones/métodos , Linfocitos T/inmunología , Animales , Antígenos de Diferenciación/análisis , Biomarcadores/análisis , Diagnóstico Precoz , Perfilación de la Expresión Génica/métodos , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/inmunología , Humanos , Tamizaje Masivo/métodos , Ratones , Ligando OX40/análisis , Ligando OX40/inmunología , Radioinmunoensayo/métodosRESUMEN
PURPOSE: Immunomonitoring of chimeric antigen receptor (CAR) T cells relies primarily on their quantification in the peripheral blood, which inadequately quantifies their biodistribution and activation status in the tissues. Noninvasive molecular imaging of CAR T cells by PET is a promising approach with the ability to provide spatial, temporal, and functional information. Reported strategies rely on the incorporation of reporter transgenes or ex vivo biolabeling, significantly limiting the application of CAR T-cell molecular imaging. In this study, we assessed the ability of antibody-based PET (immunoPET) to noninvasively visualize CAR T cells. EXPERIMENTAL DESIGN: After analyzing human CAR T cells in vitro and ex vivo from patient samples to identify candidate targets for immunoPET, we employed a syngeneic, orthotopic murine tumor model of lymphoma to assess the feasibility of in vivo tracking of CAR T cells by immunoPET using the 89Zr-DFO-anti-ICOS tracer, which we have previously reported. RESULTS: Analysis of human CD19-CAR T cells during activation identified the Inducible T-cell COStimulator (ICOS) as a potential target for immunoPET. In a preclinical tumor model, 89Zr-DFO-ICOS mAb PET-CT imaging detected significantly higher signal in specific bone marrow-containing skeletal sites of CAR T-cell-treated mice compared with controls. Importantly, administration of ICOS-targeting antibodies at tracer doses did not interfere with CAR T-cell persistence and function. CONCLUSIONS: This study highlights the potential of ICOS-immunoPET imaging for monitoring of CAR T-cell therapy, a strategy readily applicable to both commercially available and investigational CAR T cells.See related commentary by Volpe et al., p. 911.
Asunto(s)
Inmunoterapia Adoptiva/métodos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Linfoma de Células B Grandes Difuso/terapia , Linfocitos T/trasplante , Animales , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Técnicas de Cocultivo , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Linfoma de Células B Grandes Difuso/inmunología , Ratones , Ratones Transgénicos , Imagen Molecular/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , RNA-Seq , Receptores Quiméricos de Antígenos/inmunología , Estudios Retrospectivos , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.
Asunto(s)
Oro , Nanopartículas del Metal , Huesos/diagnóstico por imagen , Glutatión , Imagen ÓpticaRESUMEN
Immunotherapy is innovating clinical cancer management. Nevertheless, only a small fraction of patient's benefit from current immunotherapies. To improve clinical management of cancer immunotherapy, it is critical to develop strategies for response monitoring and prediction. In this study, we describe inducible T-cell costimulator (ICOS) as a conserved mediator of immune response across multiple therapy strategies. ICOS expression was evaluated by flow cytometry, 89Zr-DFO-ICOS mAb PET/CT imaging was performed on Lewis lung cancer models treated with different immunotherapy strategies, and the change in tumor volume was used as a read-out for therapeutic response. ImmunoPET imaging of ICOS enabled sensitive and specific detection of activated T cells and early benchmarking of immune response. A STING (stimulator of interferon genes) agonist was identified as a promising therapeutic approach in this manner. The STING agonist generated significantly stronger immune responses as measured by ICOS ImmunoPET and delayed tumor growth compared with programmed death-1 checkpoint blockade. More importantly, ICOS ImmunoPET enabled early and robust prediction of therapeutic response across multiple treatment regimens. These data show that ICOS is an indicator of T-cell-mediated immune response and suggests ICOS ImmunoPET as a promising strategy for monitoring, comparing, and predicting immunotherapy success in cancer. SIGNIFICANCE: ICOS ImmunoPET is a promising strategy to noninvasively predict and monitor immunotherapy response.See related commentary by Choyke, p. 2975.
Asunto(s)
Imagen Molecular , Neoplasias , Humanos , Inmunoterapia , Proteína Coestimuladora de Linfocitos T Inducibles , Neoplasias/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Linfocitos TRESUMEN
Elevated expression of the c-Met receptor plays a crucial role in cancers. In non-small cell lung cancer (NSCLC), aberrant activation of the c-Met signaling pathway contributes to tumorigenesis and cancer progression and may mediate acquired resistance to epidermal growth factor receptor-targeted therapy. c-Met is therefore emerging as a promising therapeutic target for NSCLC, and methods for noninvasive in vivo assessment of c-Met expression would improve NSCLC treatment and diagnosis. Methods: We developed a new c-Met-binding peptide (cMBP) radiotracer, 99mTc-hydrazine nicotinamide (HYNIC)-cMBP, for SPECT imaging. Cell uptake assays were performed on 2 NSCLC cell lines with different c-Met expressions: H1993 (high expression) and H1299 (no expression). In vivo tumor specificity was assessed by SPECT imaging in tumor-bearing mice at 0.5, 1, 2, and 4 h after injection of the probe. Blocking assays, biodistribution, and autoradiography were also conducted to determine probe specificity. Results:99mTc-HYNIC-cMBP was prepared with high efficiency and showed higher uptake in H1993 cells than in H1299 cells. Biodistribution and autoradiography also showed significantly higher percentages of the injected dose for 99mTc-HYNIC-cMBP in H1993 tumors than in H1299 tumors at 0.5 h (4.74 ± 1.43%/g and 1.00 ± 0.37%/g, respectively; P < 0.05). H1993 tumors were clearly visualized at 0.5 h in SPECT images, whereas H1299 tumors were not observed at any time. The specificity of 99mTc-HYNIC-cMBP for c-Met was demonstrated by a competitive block with an excess of nonradiolabeled peptide. Conclusion: For c-Met-targeted SPECT imaging of NSCLC, we developed 99mTc-HYNIC-cMBP, a tracer that specifically binds to c-Met with favorable pharmacokinetics in vitro and in vivo.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Oligopéptidos/farmacocinética , Compuestos de Organotecnecio/farmacocinética , Proteínas Proto-Oncogénicas c-met/metabolismo , Radiofármacos/farmacocinética , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Hidrazinas/química , Hidrazinas/farmacocinética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacocinética , Oligopéptidos/química , Compuestos de Organotecnecio/química , Radiofármacos/química , Distribución TisularRESUMEN
Tumor heterogeneity and changes in epidermal growth factor receptor (EGFR) mutation status over time challenge the design of effective EGFR tyrosine kinase inhibitor (TKI) treatment strategies for non-small cell lung cancer (NSCLC). Therefore, there is an urgent need to develop techniques for comprehensive tumor EGFR profiling in real time, particularly in lung cancer precision medicine trials. We report a positron emission tomography (PET) tracer, N-(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2-18F-fluoroethoxy) ethoxy) ethoxy) ethoxy)-6-methoxyquinazolin-4-amine (18F-MPG), with high specificity to activating EGFR mutant kinase. We evaluate the feasibility of using 18F-MPG PET for noninvasive imaging and quantification of EGFR-activating mutation status in preclinical models of NSCLC and in patients with primary and metastatic NSCLC tumors. 18F-MPG PET in NSCLC animal models showed a significant correlation (R2 = 0.9050) between 18F-MPG uptake and activating EGFR mutation status. In clinical studies with NSCLC patients (n = 75), the concordance between the detection of EGFR activation by 18F-MPG PET/computed tomography (CT) and tissue biopsy reached 84.29%. There was a greater response to EGFR-TKIs (81.58% versus 6.06%) and longer median progression-free survival (348 days versus 183 days) in NSCLC patients when 18F-MPG PET/CT SUVmax (maximum standard uptake value) was ≥2.23 versus <2.23. Our study demonstrates that 18F-MPG PET/CT is a powerful method for precise quantification of EGFR-activating mutation status in NSCLC patients, and it is a promising strategy for noninvasively identifying patients sensitive to EGFR-TKIs and for monitoring the efficacy of EGFR-TKI therapy.
Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Receptores ErbB/genética , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , MutaciónRESUMEN
To prepare and evaluate a new radiotracer 18F-IRS for molecular imaging mutant EGF Receptors in vitro and vivo. Uptake and efflux of 18F-IRS were performed with four NSCLC cell lines including HCC827, H1975, H358 and H520. In vivo tumor targeting and pharmacokinetics of the radiotracers were also evaluated in HCC827, H1975, H358 and H520 tumor-bearing nude mice by PET/CT imaging. Ex vivo biodistribution assays were performed to quantify the accumulation of 18F-IRS in vivo. We also performed 18F-IRS PET/CT imaging of three patients with NSCLC. We labeled this small molecule with QD620 for flow cytometry and confocal imaging analyses. The uptakes of 18F-IRS by HCC827 and HCC827 tumors were significantly higher than those of H358, H1975 and H520, and they were reduced by the addition of 100 µM of gefitinib. Biodistribution experiments showed an accumulation of 18F-IRS in tumors of HCC827 xenografts. Flow cytometry and confocal imaging with QD620-IRS further demonstrated that binding specifically to HCC827 cells. 18F-IRS accumulation was preferential in the tumor, which was NSCLC with responsive EGFR exon 19 deleted. 18F-IRS showed high binding stability and specificity to 19 exon deleted EGFR mutation in vitro and vivo.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Radioisótopos de Flúor/química , Neoplasias Pulmonares/diagnóstico por imagen , Quinazolinas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Exones , Humanos , Neoplasias Pulmonares/genética , Ratones , Simulación del Acoplamiento Molecular , Imagen Molecular , Estructura Molecular , Trasplante de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Quinazolinas/síntesis química , Quinazolinas/química , Eliminación de SecuenciaRESUMEN
Tyrosine kinase inhibitors (EGFR-TKIs) targeting the epidermal growth factor receptor (EGFR) have been used in non-small cell lung carcinoma (NSCLC) for years with promising results, in particular in patients with activating mutations in the EGFR kinase domain (exon 19 E746-A750 deletion or exon 21 L858R point mutation). However, despite their great success in the clinic, a significant number of patients do not respond to EGFR-TKIs, such as those carrying the L858R/T790M mutation or EGFR wild type. Thus, detecting the EGFR mutation status before EGFR-TKIs therapy is essential to ensure its efficacy. In this study, we report a novel SPECT tracer 99mTc-HYNIC-MPG that binds specifically to activating mutant EGFR and which could therefore be used to noninvasively select patients sensitive to EGFR-TKIs. We evaluated the capacity of 99mTc-HYNIC-MPG in detecting EGFR-activating mutations both in vitro and in vivo using four human NSCLC cell lines (PC9, H1975, H358 and H520). 99mTc-HYNIC-MPG had significantly higher accumulation in PC9 tumor cells when compared to H1975, H358 and H520 tumors cells, which may be due to the activating mutations (exon 19 deletion) in EGFR tyrosine kinase domain in PC9 cells. Thus, 99mTc-HYNIC-MPG SPECT imaging may be used to identify NSCLC tumors with a potential high response rate to EGFR-TKIs.