Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535276

RESUMEN

Ceramic membranes are applied to remove non-sugar impurities, including proteins, colloids and starch, from glucose-fructose syrup that is dissolved from raw sugar using acid. The performance of ceramic membranes with 0.05 µm pores in clarifying high-fructose syrup was investigated under various operating conditions. The flux decreased rapidly at the start of the experiment and then tended to stabilize at a temperature of 90 °C, a transmembrane pressure of 2.5 bar, and cross-flow velocity of 5 m/s under total reflux operation. Moreover, the steady-state flux was measured at 181.65 Lm-2 h-1, and the turbidity of glucose-fructose syrup was reduced from 92.15 NTU to 0.70 NTU. Although membrane fouling is inevitable, it can be effectively controlled by developing a practical approach to regenerating membranes. Mathematical model predictions, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy revealed that foulants primarily responsible for fouling are composed of polysaccharides, proteins, sucrose, phenols, and some metal elements, such as calcium, aluminum, and potassium. Due to the removal of suspended colloidal solids, the membrane-filtered glucose-fructose syrup was decolorized using activated carbon; the filtration rate was effectively improved. A linear relationship between volume increase in syrup and time was observed. A decolorization rate of 90% can be obtained by adding 0.6 (w/w) % of activated carbon. The pretreatment of glucose-fructose syrup using a ceramic membrane coupled with activated carbon results in low turbidity and color value. This information is essential for advancing glucose-fructose syrup and crystalline fructose production technology.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38415967

RESUMEN

An integrated and projected-based laboratory course was described, integrating interconnected knowledge points and biochemistry and molecular biology techniques on a research project-based system. The program, which served as an essential extension of theoretical courses to practice, was conducted with a sophomore of basic medical science who had completed the course in medical biochemistry and molecular biology. This course engaged students in learning "genetic manipulation" and "recombinant DNA technology" to understand the target gene's role in disease mechanics, thus altering evaluation and treatment for clinical disease. Students could master applied and advanced techniques, such as cell culture, transfection, inducing exogenous fusion protein expression, purifying protein and its concentration assay, quantitative polymerase chain reaction, and western bot analysis. This laboratory exercise links laboratory practices with the methods of current basic research. Students need to complete the experimental design report and laboratory report, which could be advantageous for improving their ability to write lab summaries and scientific papers in the future. The reliability and validity analyses were conducted on the questionnaire, and we examined students' satisfaction with the course and their gains from the course. The student feedback was generally positive, indicating that the exercise helped consolidate theoretical knowledge, increase scientific research enthusiasm, and provide a powerful tool to be a better person and make informed decisions.

3.
Int J Radiat Oncol Biol Phys ; 118(1): 203-217, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610394

RESUMEN

PURPOSE: Radiation-induced heart fibrosis (RIHF) is a severe consequence of radiation-induced heart damage (RIHD) leading to impaired cardiac function. The involvement of oncostatin M (OSM) and its receptor (OSMR) in RIHD remains unclear. This study aimed to investigate the specific mechanism of OSM/OSMR in RIHF/RIHD. METHODS AND MATERIALS: RNA sequencing was performed on heart tissues from a RIHD mouse model. OSM levels were assessed in serum samples obtained from patients receiving thoracic radiation therapy (RT), as well as in RIHF mouse heart tissues and serum using enzyme-linked immunosorbent assay. Fiber activation was evaluated through costimulation of primary cardiac fibroblasts and NIH3T3 cells with RT and OSM, using Western blotting, immunofluorescence, and quantitative Polymerase Chain Reaction (qPCR). Adeno-associated virus serotype 9-mediated overexpression or silencing of OSM specifically in the heart was performed in vivo to assess cardiac fibrosis levels by transthoracic echocardiography and pathologic examination. The regulatory mechanism of OSM on the transcription level of SMAD4 was further explored in vitro using mass spectrometric analysis, chromatin immunoprecipitation-qPCR, and DNA pull-down. RESULTS: OSM levels were elevated in the serum of patients after thoracic RT as well as in RIHF mouse cardiac endothelial cells and mouse serum. The OSM rate (post-RT/pre-RT) and the heart exposure dose in RT patients showed a positive correlation. Silencing OSMR in RIHF mice reduced fibrosis, while OSMR overexpression increased fibrotic responses. Furthermore, increased OSM promoted histone acetylation (H3K27ac) in the SMAD4 promoter region, influencing SMAD4 transcription and subsequently enhancing fibrotic response. CONCLUSIONS: The findings demonstrated that OSM/OSMR signaling promotes SMAD4 transcription in cardiac fibroblasts through H3K27 hyperacetylation, thereby promoting radiation-induced cardiac fibrosis and manifestations of RIHD.


Asunto(s)
Células Endoteliales , Fibroblastos , Animales , Humanos , Ratones , Fibroblastos/metabolismo , Fibrosis , Células 3T3 NIH , Oncostatina M/genética , Oncostatina M/metabolismo , Oncostatina M/farmacología , Receptores de Oncostatina M/metabolismo , Proteína Smad4
6.
J Sci Food Agric ; 103(13): 6394-6405, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37205788

RESUMEN

BACKGROUND: The present study investigates the physical, chemical, and antibacterial properties of water-soluble chitosan derivatives. Preparation of the water-soluble chitosan derivatives was performed by the Maillard reaction (MR) between chitosan [with the degree of deacetylation (DD) being 50%, 70%, and 90%] and mannose. No organic reagent was used in the process. Systematic evaluations of the effects of chitosan DD on the reaction extent, the structure, the composition, as well as the physicochemical properties, antioxidant properties, and bacterial inhibitory properties of the finished chitosan-mannose MR products (Mc-mrps), were carried out. RESULTS: Based on the experimental data obtained from Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, Pyrolysis-gas chromatography-mass spectrometry analysis, and 1 H-NMR, the Mc-mrps formed from chitosan with different DDs had different structures and components. An increase in the DD of chitosan led to a significant increase in the degree of reaction, color difference (△E), and solubility (P < 0.05). The zeta potential and particle size of the Mc-mrps were also influenced by the DD of chitosan. Additionally, the antimicrobial action against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as antioxidant activity, were enhanced by the incorporation of mannose. This was also achieved by the increase of the DD of chitosan. CONCLUSION: The results of the present study suggest that chitosan was derived with mannose to yield a novel, water-soluble polysaccharide with better antioxidant and antimicrobial activities. The DD of chitosan had a significant effect on the properties of the Mc-mrp, which can serve as a reference point for the subsequent preparation and application of such derivatives. © 2023 Society of Chemical Industry.


Asunto(s)
Quitosano , Quitosano/farmacología , Quitosano/química , Antioxidantes/farmacología , Antioxidantes/química , Manosa , Antibacterianos/farmacología , Antibacterianos/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Mol Cell Biol ; 15(4)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073091

RESUMEN

Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.


Asunto(s)
Adipocitos , Transducción de Señal , Animales , Ratones , Línea Celular Tumoral , Fenotipo , Adipocitos/metabolismo , Metástasis de la Neoplasia , Movimiento Celular , Microambiente Tumoral
8.
RSC Adv ; 13(1): 1-13, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36545289

RESUMEN

In this study, a novel polyethyleneimine (PEI) modified MOF-derived carbon adsorbent (PEI@MDC) was proposed, which exhibited significant adsorption capacity for Congo Red (CR) in aqueous solutions. FT-IR and XPS results showed that PEI was successfully grafted onto MDC, increasing the content of amine groups on the surface of MDC. The adsorption process conformed to the Langmuir isotherm adsorption model and pseudo-second-order kinetic equation, indicating that the adsorption of CR on PEI@MDC was covered by a single layer, and the adsorption process was controlled by chemical processes. According to the Langmuir model, the maximum adsorption capacity at 30 °C was 1723.86 mg g-1. Hydrogen bonding and electrostatic interactions between CR and PEI@MDC surface functional groups were the main mechanisms controlling the adsorption process. After five adsorption-desorption cycles, PEI@MDC still showed a high adsorption capacity for CR, indicating that the adsorbent had an excellent regeneration ability.

9.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295669

RESUMEN

The performance of stainless steel membranes with pore sizes of 100 and 20 nm in clarifying limed sugarcane juice was investigated under different operating conditions. An increase in transmembrane pressure (TMP) for the 20 nm membrane from 2 to 5 bar led to an increase in the average flux from 146.6 Lm-2 h-1 to 187.8 Lm-2 h-1 (approximately 9 h). The increase in crossflow velocity from 2 to 5 m/s led to an increase in the average flux from 111.9 Lm-2 h-1 to 158.1 Lm-2 h-1. The increase in temperature from 70 °C to 90 °C caused an increase in the average flux from 132.8 Lm-2 h-1 to 148.6 Lm-2 h-1. Simultaneously, the test produced a high-quality filtered juice with an average of 1.26 units of purity rise. The purity increased with time, and a 99.99% reduction in turbidity and an average 29.3% reduction in colour were observed. In addition, four classic filtration mathematical models and scanning electron microscopy (SEM) analyses suggested that cake formation is the main mechanism for flux decline. Fourier transform infrared (FTIR) spectrometry and energy-dispersive X-ray (EDX) spectrometry indicated that organic fouling is the main foulant. This study demonstrates the potential of stainless steel membranes as filters for the clarification of raw sugarcane juice.

10.
Front Pharmacol ; 13: 951521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147355

RESUMEN

Acute liver failure (ALF) is an unfavorable condition characterized by the rapid loss of liver function and high mortality. Chrysophanol-8-O-glucoside (CPOG) is an anthraquinone derivative isolated from rhubarb. This study aims to evaluate the protective effect of CPOG on lipopolysaccharide (LPS)/D-GalN-induced ALF and its underlying mechanisms. LPS/D-GalN-induced mice ALF model and LPS treatment model in RAW 264.7 and LX2 cells were established. It was found that CPOG ameliorated LPS/D-GalN-induced liver injury and improved mortality as indicated by Hematoxylin-eosin (H&E) staining. Molecularly, qPCR and ELISA results showed that CPOG alleviated LPS/D-GalN-induced release of alanine aminotransferase and aspartate transaminase and the secretion of TNF-α and IL-1ß in vivo. LPS/D-GalN-induced intracellular ROS production was also attenuated by CPOG in liver tissue. Further, CPOG attenuated ROS generation and inhibited the expression of p-IκB and p-p65 as well as the expression of TNF-α and IL-1ß stimulated by LPS in RAW 264.7 cells. In addition, CPOG alleviated LPS-induced up-regulation of LC3B, p62, ATG5 and Beclin1 by attenuating ROS production and inhibiting MAPK signaling in LX2 cells. Taken together, our data indicated that the CPOG protected against LPS/D-GalN-induced ALF by inhibiting oxidative stress, inflammation response and autophagy. These findings suggest that CPOG could be potential drug for the treatment of ALF in clinic.

11.
Prostaglandins Other Lipid Mediat ; 163: 106668, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934213

RESUMEN

Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-responsive protein and is thought to mediate part of the anti-inflammatory effects of glucocorticoid receptors (GRs). Its role in inflammation and immune responses has been widely studied since its discovery in 1997. Recently, increasing studies showed that GILZ might be involved in the differentiation of preadipocytes and adipogenesis. This review aims to provide readers with the latest updates on the biology of GILZ. The role and regulatory mechanism of GILZ in lipid metabolism and preadipocytes differentiation were summarized. In addition, new insights on the regulatory mechanism of GILZ in adipocyte browning was also discussed, which proposes a novel therapeutic target for lipid metabolic disorders in the future. However, research related to the function and regulatory mechanisms of GILZ in lipid metabolism and adipocyte biology is still in its infancy, and there is still much work needs to be done.


Asunto(s)
Glucocorticoides , Factores de Transcripción , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Factores de Transcripción/metabolismo , Metabolismo de los Lípidos , Adipocitos/metabolismo , Biología
12.
Foods ; 11(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35885414

RESUMEN

The clarification of sugarcane juice is a crucial stage in the sugar manufacturing process, as it affects evaporator performance, sugar quality and yield. The emergence of environmentally friendly and efficient adsorption technology has resulted in widespread interest in carbon-based materials. However, their low adsorption capacity and reusability make them unsuitable for processing sugarcane juice. Here, we provide a cost-effective and sustainable method to dope hydroxyapatite (HAP) nanoparticles on porous carbon (BBC) derived from sugarcane bagasse (BBC-HAP). The composite shows excellent adsorption capacity for color extract from sugarcane juice of 313.33 mg/g, far more effective than the commercially available carbon-based adsorbents. Isotherm studies show that the adsorption of BBC-HAP composite to the colorants is a monolayer process. The pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models demonstrate that the adsorption process is dominated by chemisorption and supplemented by physical adsorption.

13.
Front Nutr ; 9: 914416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719160

RESUMEN

Glycosylation is considered to be an effective way to improve the performance of protein emulsification. This study focused on the effects of the molecular structure and emulsifying properties of ovalbumin (OVA) by wet heating Maillard reaction with three types of monosaccharides (i.e., xylose, glucose, and galactose). Results showed that increasing reaction temperature from 55°C to 95°C could significantly improve the degree of grafting (DG), while glycosylated OVA conjugate with xylose at 95°C processed the highest DG of 28.46%. This reaction was further confirmed by the browning intensity determination. Analysis of Fourier transform infrared spectrophotometer, circular dichroism, and fluorescence spectra indicated that there were slight changes in the subunits and the conversion of α-helices to ß-sheets, as well as the unfolded structures, thereby increasing the surface hydrophobicity and absolute zeta potential of obtained glycosylated OVA. Glycosylation endowed OVA with better emulsifying properties, especially the xylose glycosylated OVA was superior to that of glucose and galactose glycosylated OVA, which was mainly due to its shorter molecular chains with smaller steric hindrance for reaction. Furthermore, the enhancement of emulsifying properties may be attributed to the synergistic effect of stronger electrostatic repulsion of larger absolute zeta potential and the steric hindrance from thicker adsorbed layer, thereby inhibiting aggregation and flocculation of emulsion droplet.

14.
RSC Adv ; 12(3): 1885-1896, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35425169

RESUMEN

Activated-hydrochar (AHC) derived from sugarcane bagasse was synthesized by hydrothermal carbonization (HTC) using phosphoric acid and sodium hydroxide (NaOH) as activators. The properties of AHC were systematically characterized by elemental analysis, BET, SEM, FTIR, XPS and zeta potential, and applied to evaluate the adsorption ability of methylene blue (MB) by batch adsorption tests. The MB adsorption isotherm and kinetics of AHC were well described by the Langmuir model and pseudo-second-order kinetic model. Characteristic analysis suggested electrostatic attraction, hydrogen bonding and π-π interactions were the main contributors to MB adsorption. Analysis of mass transfer mechanisms demonstrated the adsorption process towards MB by AHC involved intra-particle diffusion to some extent. Thermodynamic studies indicated MB adsorption was an endothermic, spontaneous process associated with a disorder increase at the solid-liquid interface. The maximum adsorption capacity of AHC for MB was 357.14 mg g-1 at 303 K. Thus, the combination of HTC in phosphoric acid and NaOH activation offered a facile, green and economical alternative for conversion of sugarcane bagasse into efficient adsorbents used in wastewater treatment.

15.
Int J Biol Sci ; 18(4): 1363-1380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280694

RESUMEN

Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Adipocitos/metabolismo , Neoplasias de la Mama/metabolismo , Retroalimentación , Femenino , Humanos , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Neoplasias Pulmonares/metabolismo
16.
Front Nutr ; 9: 1110706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712504

RESUMEN

Bagasse is one of major by-product of sugar mills, but its utilization is limited by the high concentration of lignin. In this study, the optimal alkaline hydrogen peroxide (AHP) treatment conditions were determined by the response surface optimization method. The results showed that the lignin removal rate was 62.23% and the solid recovery rate was 53.76% when bagasse was prepared under optimal conditions (1.2% H2O2, 0.9% NaOH, and 46°C for 12.3 h), while higher purity of bagasse insoluble dietary fiber (BIDF) was obtained. To further investigate the modification effect, AHP assisted with high-temperature-pressure cooking (A-H) and enzymatic hydrolysis (A-E) were used to modify bagasse, respectively. The results showed that the water holding capacity (WHC), oil holding capacity (OHC), bile salt adsorption capacity (BSAC), and nitrite ion adsorption capacity (NIAC) were significantly improved after A-H treatment. With the A-E treatment, cation exchange capacity (CEC) and BSAC were significantly increased, while WHC, OHC, and glucose adsorption capacity (GAC) were decreased. Especially, the highest WHC, OHC, BSAC and NIAC were gained by A-H treatment compared to the A-E treatment. These changes in the physicochemical and functional properties of bagasse fiber were in agreement with the microscopic surface wrinkles and pore structure, crystallinity and functional groups. In summary, the A-H modification can effectively improve the functional properties of bagasse fiber, which potentially can be applied further in the food industry.

17.
Foods ; 10(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34359431

RESUMEN

The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) coupled with chemometrics was employed to assess the differences at the various stages of the dehydration process. A total of 111 volatile compounds were identified, among which 57 were endogenous compounds from sugarcane juice and displayed an attenuated abundance in the first 30 min. Typical oxygen and nitrogen heterocyclic compounds, including furans and pyrazines, and aldehydes derived were found to be the main volatiles contributing to the formation of NCS characteristic aroma, with phenols, alcohols, esters, acids, and sulfur compounds as supplementary odor. Free amino acids and reducing sugars were identified as important precursors for the aroma development process. The low temperature (90-108 °C) and micro vacuum condition (-0.03 MPa) approach used in this study could be an alternative option for the manufacture of NCS.

18.
Biochem Mol Biol Educ ; 49(5): 720-728, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111317

RESUMEN

The COVID-19 pandemic is a huge challenge to education systems. Most governments around the world have temporarily closed schools, universities, and colleges. At the same time, teachers and students are encouraged to use the online and distance learning programs and platforms as an alternative. In the present study, we proposed a series of innovative solutions in Medical Molecular Biology education during the COVID-19 pandemic in China, including a flipped classroom model, live streaming course, chat Apps, and scientific papers on COVID-19 as additional learning material. Our results demonstrated that these innovations not only help teachers to maintain the teaching process as usual but also be useful for protecting students from psychological trauma. Our study indicates that online education with a well-designed workflow for conducting provides an alternative approach for teachers to maintain quality education during the onset of the emerging crisis.


Asunto(s)
COVID-19/epidemiología , Curriculum , Educación a Distancia , Educación Médica , Aplicaciones Móviles , Biología Molecular/educación , Pandemias , SARS-CoV-2 , China/epidemiología , Humanos
19.
Food Chem ; 345: 128826, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33601657

RESUMEN

Brown sugar (non-centrifugal cane sugar) is popular for its pleasant caramel-like aroma and sweetness. Vacuum simultaneous steam distillation and extraction (V-SDE) and gas chromatography-mass spectrometry (GC-MS) was used to study the volatile fraction of brown sugar. To further determine the aroma-active compounds in brown sugar, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) were used in conjunction with aroma extraction dilution analysis (AEDA), odor activity values (OAVs), and sensory evaluation to analyze the effects of the key aroma-active compounds on sweetness. A total of 37 aroma-active compounds were obtained, mainly including ketones, pyrazines, alkanes, phenols and alcohols, which contributed caramel, sweet and fruity notes to brown sugar. Among them, furfural, benzeneacetaldehyde, 2,3-butanedione, ß-damascenone, 2-methoxyphenol, dihydro-2-methyl-3(2H)-furanone, 2-furanmethanol and butyrolactone could significantly enhance the sweetness of sugar solution because of the congruency of the aroma attributes and sweetness.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Olfatometría/métodos , Azúcares/química , Edulcorantes/análisis , Destilación , Compuestos Orgánicos Volátiles/análisis
20.
RSC Adv ; 11(45): 28138-28147, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35480768

RESUMEN

We present a simple, low-cost method for producing activated-carbon materials from sugarcane tips (ST) via two-step pre-carbonization and KOH activation treatment. After optimizing the amount of KOH, the resulting ST-derived activated carbon prepared with a KOH to PC-ST mass ratio of 2 (ACST-2) contained 17.04 wt% oxygen and had a large surface area of 1206.85 m2 g-1, which could be attributed to the large number of micropores in ACST-2. In a three-electrode system, the ACST-2 electrode exhibited a high specific capacitance of 259 F g-1 at 0.5 A g-1 and good rate capability with 82.66% retention from 0.5 to 10 A g-1. In addition, it displayed a high capacitance retention of 89.6% after 5000 cycles at a current density of 3 A g-1, demonstrating excellent cycling stability. Furthermore, the ACST-2//ACST-2 symmetric supercapacitor could realize a high specific energy density of 7.93 W h kg-1 at a specific power density of 100 W kg-1 in 6 M KOH electrolyte. These results demonstrate that sugarcane tips, which are inexpensive and easily accessible agricultural waste, can be used to create a novel biomass precursor for the production of low-cost activated carbon materials for high-performance supercapacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...