Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 862: 160729, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496017

RESUMEN

The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.


Asunto(s)
Membrana Celular , Crassostrea , Animales , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Crassostrea/fisiología , Ecosistema , Metabolismo Energético , Nucleótidos/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...