Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(18): e2303752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311573

RESUMEN

Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.


Asunto(s)
Núcleo Pulposo , Células Madre , Transcriptoma , Animales , Ratones , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citología , Células Madre/metabolismo , Transcriptoma/genética , Diferenciación Celular/genética , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Perfilación de la Expresión Génica/métodos , Modelos Animales de Enfermedad
2.
Nat Neurosci ; 24(12): 1745-1756, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737447

RESUMEN

Precise generation of excitatory neurons and inhibitory interneurons is crucial for proper formation and function of neural circuits in the mammalian brain. Because of the size and complexity of the human brain, it is a challenge to reveal the rich diversity of interneurons. To decipher origin and diversity of interneurons in the human fetal subpallium, here we show molecular features of diverse subtypes of interneuron progenitors and precursors by conducting single-cell RNA sequencing and in situ sequencing. Interneuron precursors in the medial and lateral ganglionic eminence simultaneously procure temporal and spatial identity through expressing a combination of specific sets of RNA transcripts. Acquisition of various interneuron subtypes in adult human brains occurs even at fetal stages. Our study uncovers complex molecular signatures of interneuron progenitors and precursors in the human fetal subpallium and highlights the logic and programs in the origin and lineage specification of various interneurons.


Asunto(s)
Encéfalo , Interneuronas , Animales , Humanos , Interneuronas/fisiología , Mamíferos
3.
Sci Rep ; 11(1): 15610, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341433

RESUMEN

As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated multiple bioinformatic methods and RNA in situ detection technology to identify and validate hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes were up-regulated in tumor tissues and associated with cancer progression. The receiver operating characteristic analysis and Kaplan-Meier survival analysis indicated that these four hub genes are promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast cancer development, their exact functional mechanisms deserve further in-depth study.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...