Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Med ; 30(1): 63, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760678

RESUMEN

BACKGROUND: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS: AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS: Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS: These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Senescencia Celular , Diabetes Mellitus Experimental , Ferritinas , Coactivadores de Receptor Nuclear , Cicatrización de Heridas , Animales , Ratones , Ferritinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Masculino , Ferroptosis , Humanos , Modelos Animales de Enfermedad , Activación Enzimática
2.
Acta Biomater ; 172: 407-422, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37848101

RESUMEN

Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal ß-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating Fe3O4 with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP). We found that F@GP can selectively release Fe3O4 into senescent cells, inducing ferroptosis via the Fenton reaction in the presence of elevated intracellular H2O2 levels. This showed that F@GP administration can serve as a chemodynamic therapy to eliminate senescent cells and promote cell proliferation. Furthermore, the F@GP drug delivery system gradually released iron ions into the diabetic wound tissues, enhancing the attenuation of cellular senescence, stimulating cell proliferation, promoting re-epithelialization, and accelerating the healing of diabetic wounds in mice. Our groundbreaking approach unveiled the specific targeting of senescence by F@GP, demonstrating its profound effect on promoting the healing of diabetic wounds. This discovery underscores the therapeutic potential of F@GP in effectively addressing challenging cases of wound repair. STATEMENT OF SIGNIFICANCE: The development of galactose-modified PLGA nanoparticles loaded with Fe3O4 (F@GP) represents a significant therapeutic approach for the treatment of diabetic wounds. These nanoparticles exhibit remarkable potential in selectively targeting senescent cells, which accumulate in diabetic wound tissue, through an enzyme-responsive mechanism. By employing chemodynamic therapy, F@GP nanoparticles effectively eliminate senescent cells by releasing iron ions that mediate the Fenton reaction. This targeted approach holds great promise for promoting diabetic wound healing by selectively eliminating senescent cells, which play a crucial role in impairing the wound healing process. The innovative utilization of F@GP nanoparticles as a therapeutic intervention offers a novel and potentially transformative strategy for addressing the challenges associated with diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Nanosferas , Ratones , Animales , Peróxido de Hidrógeno/farmacología , Galactosa , Cicatrización de Heridas , Senescencia Celular , Hierro/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...