Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(12): 2423-2435, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37991879

RESUMEN

Antimicrobial resistance (AMR) is widely acknowledged as one of the most serious public health threats facing the world, yet the private sector finds it challenging to generate much-needed medicines. As an alternative discovery approach, a small array of diarylimidazoles was screened against the ESKAPE pathogens, and the results were made publicly available through the Open Source Antibiotics (OSA) consortium (https://github.com/opensourceantibiotics). Of the 18 compounds tested (at 32 µg/mL), 15 showed >90% growth inhibition activity against methicillin-resistant Staphylococcus aureus (MRSA) alone. In the subsequent hit-to-lead optimization of this chemotype, 147 new heterocyclic compounds containing the diarylimidazole and other core motifs were synthesized and tested against MRSA, and their structure-activity relationships were identified. While potent, these compounds have moderate to high intrinsic clearance and some associated toxicity. The best overall balance of parameters was found with OSA_975, a compound with good potency, good solubility, and reduced intrinsic clearance in rat hepatocytes. We have progressed toward the knowledge of the molecular target of these phenotypically active compounds, with proteomic techniques suggesting TGFBR1 is potentially involved in the mechanism of action. Further development of these compounds toward antimicrobial medicines is available to anyone under the licensing terms of the project.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Ratas , Animales , Antibacterianos/farmacología , Proteómica , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
2.
J Med Chem ; 66(2): 1221-1238, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36607408

RESUMEN

Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/uso terapéutico , Tripanocidas/farmacocinética
3.
RSC Med Chem ; 12(3): 384-393, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34041487

RESUMEN

An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure-activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...