Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6125, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777546

RESUMEN

Defects passivation is widely devoted to improving the performance of formamidinium lead triiodide perovskite solar cells; however, the effect of various defects on the α-phase stability is still unclear. Here, using density functional theory, we first reveal the degradation pathway of the formamidinium lead triiodide perovskite from α to δ phase and investigate the effect of various defects on the energy barrier of phase transition. The simulation results predict that iodine vacancies are most likely to trigger the degradation, since they obviously reduce the energy barrier of α-to-δ phase transition and have the lowest formation energies at the perovskite surface. A water-insoluble lead oxalate compact layer is introduced on the perovskite surface to largely suppress the α-phase collapse through hindering the iodine migration and volatilization. Furthermore, this strategy largely reduces the interfacial nonradiative recombination and boosts the efficiency of the solar cells to 25.39% (certified 24.92%). Unpackaged device can maintain 92% of its initial efficiency after operation at maximum power point under simulated air mass 1.5 G irradiation for 550 h.

2.
J Phys Chem Lett ; 14(29): 6532-6541, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37450690

RESUMEN

Organic solar cells (OSCs) have attracted lots of attention owing to their low cost, lightweight, and flexibility properties. Nowadays, the performance of OSCs is continuously improving with the development of active layer materials. However, the traditional hole transport layer (HTL) material Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) presents insufficient conductivity and rapid degradation, which decreases the efficiency and stability of OSCs. To conquer the challenge, the two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanomaterials incorporated into the PEDOT:PSS as hybrid HTL are reported. The addition of g-C3N4 into PEDOT:PSS enables the thickness of the HTL to decrease for enhancing the transmittance of the film and increase the conductivity of PEDOT:PSS. Thus, the device exhibts improved charge transport and suppressed carrier recombination, leading to the increase in short-circuit current density and power conversion efficiency of the devices. This work demonstrates that the incorporation of 2D g-C3N4 into PEDOT:PSS for D18:Y6 and PM6:L8-BO-based OSCs can significantly improve the device efficiency to 17.48% and 18.47% with the enhancement of 7.04% and 8.46%, respectively.

3.
ACS Appl Mater Interfaces ; 15(22): 26778-26786, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219503

RESUMEN

The performance of the blue perovskite light-emitting diodes (PeLEDs) is limited by the low photoluminescence quantum yields (PLQYs) and the unstable emission centers. In this work, we incorporate sodium bromide and acesulfame potassium into a quasi-2D perovskite to control the dimension distribution and promote the PLQYs. Benefiting from the efficient energy cascade channel and passivation, the sky-blue PeLED has an external quantum efficiency of 9.7% and no shift of the electroluminescence center under operation voltages from 4 to 8 V. Moreover, the half lifetime of the devices reaches 325 s, 3.3 times that of control devices without additives. This work provides new insights into enhancing the performance of blue PeLEDs.

4.
Small Methods ; 7(3): e2201467, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36631288

RESUMEN

Post-treatment is an essential passivation step for the state-of-the-art perovskite solar cells (PSCs) but the additional role is not yet exploited. In this work, perovskite film is fabricated under ambient air with wide humidity window and identify that chloride redistribution induced by post-treatment plays an important role in high performance. The chlorine/iodine ratio on the perovskite surface increases from 0.037 to 0.439 after cyclohexylmethylammonium iodide (CHMAI) treatment and the PSCs deliver a champion power conversion efficiency (PCE) of 24.42% (certificated 23.60%). The maximum external quantum efficiency of electroluminescence (EQEEL ) reaches to 10.84% with a radiance of 170 W sr-1  m-2 , forming the reciprocity relation between EQEEL and nonradiative open-circuit voltage loss (86.0 mV). After thermal annealing, 2D component of perovskite will increase while chloride decline, leading to improved photovoltage but reduced fill factor. Hence, it distinguishes that chloride enrichment can improve charge transport/recombination simultaneously and 2D passivation can suppress the nonradiative recombination. Moreover, CHMAI can leverage their roles in charge transport/recombination for better performance than phenylethylammonium iodide (Cl/I = 0.114, PCE = 23.32%), due to the stronger binding energy of Cl- . This work provides the insight that the chloride fixation can improve the photovoltaic performance.

5.
Small ; 18(38): e2203319, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896945

RESUMEN

Wide-bandgap perovskite solar cells (PSCs) with an optimal bandgap between 1.7 and 1.8 eV are critical to realize highly efficient and cost-competitive silicon tandem solar cells (TSCs). However, such wide-bandgap PSCs easily suffer from phase segregation, leading to performance degradation under operation. Here, it is evident that ammonium diethyldithiocarbamate (ADDC) can reduce the detrimental I2 back to I- in precursor solution, thereby reducing the density of deep level traps in perovskite films. The resultant perovskite film exhibits great phase stability under continuous illumination and 30-60% relative humidity conditions. Due to the suppression of defect proliferation and ion migration, the PSCs deliver great operation stability which retain over 90% of the initial power conversion efficiency (PCE) after 500 h maximum power point tracking. Finally, a highly efficient semitransparent PSC with a tailored bandgap of 1.77 eV, achieving a PCE approaching 18.6% with a groundbreaking open-circuit voltage (VOC ) of 1.24 V enabled by ADDC additive in perovskite films is demonstrated. Integrated with a bottom silicon solar cell, a four-terminal (4T) TSC with a PCE of 30.24% is achieved, which is one of the highest efficiencies in 4T perovskite/silicon TSCs.

6.
Adv Mater ; 33(10): e2006910, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33543530

RESUMEN

It is crucial to make perovskite solar cells sustainable and have a stable operation under natural light soaking before they become commercially acceptable. Herein, a small amount of the small molecule bathophenanthroline (Bphen) is introduced into [6,6]-phenyl-C61 -butyric acid methyl ester and it is found that Bphen can stabilize the C60 -cage well through formation of much more thermodynamically stable charge-transfer complexes. Such a strengthened complex is used as an interlayer at the in-light perovskite/SnO2 side to achieve a champion device with efficiency of 23.09% (certified 22.85%). Most importantly, the stability of the resulting devices can be close to meeting the requirements of the International Electrotechnical Commission 61215 standard under simulated UV preconditioning and light-soaking testing. They can retain over 95% and 92% of their initial efficiencies after 1100 h UV irradiation and 1000 h continuous illumination of maximum power point tracking at 60 °C, respectively.

7.
Small ; 16(42): e2003098, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32997380

RESUMEN

The crystalline orientation and phase distribution are two important parameters for high-performance 2D perovskite solar cells. Therefore, it is essential to understand how the structure of spacer ligands influences the orientation and phase distribution of resulting 2D perovskite films. In this work, a new member of Dion-Jacobson (DJ) phase 2D perovskites based on trans-1,4-cyclohexanediamine (CHDA) is demonstrated and it is found that the crystalline orientation is self-aligned spontaneously, which is different from the well-known graded distribution in controlled sample with its isomer 1,6-diaminohexane (HDA) as spacer ligand. Grazing incident X-ray scattering suggests that the exact alignment is strongly slantwise to the substrate while it is still beneficial for charge transfer along the vertical structure of devices. The devices can achieve high efficiency up to 15.01% for (CHDA)MA3 Pb4 I13 (n = 4), one of the highest efficiencies reported by now. The encapsulated (CHDA)MA3 Pb4 I13 (n = 4) devices can retain 80.7% efficiency for 270 min under continuous maximum power point tracking. (CHDA)MA3 Pb4 I13 (n = 4) devices can retain 96.5% efficiency under 60 °C and 74.4% efficiency under 70 °C heating for 68 h. The results demonstrate the slantwise aligned DJ phase perovskite solar cells with excellent stability.

8.
Sci Bull (Beijing) ; 65(20): 1726-1734, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659245

RESUMEN

Many organic molecules with various functional groups have been used to passivate the perovskite surface for improving the efficiency and stability of perovskite solar cell (PSCs). However, the intrinsic attributes of the passivation effect based on different chemical bonds are rarely studied. Here, we comparatively investigate the passivation effect among 12 types of functional groups on para-tert-butylbenzene for PSCs and find that the open circuit voltage (VOC) tends to increase with the chemical bonding strength between perovskite and these passivation additive molecules. Particularly, the para-tert-butylbenzoic acid (tB-COOH), with the extra intermolecular hydrogen bonding, can stabilize the surface passivation of perovskite films exceptionally well through formation of a crystalline interlayer with water-insoluble property and high melting point. As a result, the tB-COOH device achieves a champion power conversion efficiency (PCE) of 21.46%. More importantly, such devices, which were stored in ambient air with a relative humidity of ≃45%, can retain 88% of their initial performance after a testing period of more than 1 year (10,080 h). This work provides a case study to understand chemical bonding effects on passivation of perovskite.

9.
iScience ; 21: 217-227, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31675551

RESUMEN

The inorganic metal oxides (IMOs), including titanium dioxide (TiO2) and tin dioxide (SnO2), inevitably induce decomposition of perovskite under UV illumination owing to their photocatalytic activity, and the use of a UV filter will add extra cost and reduce the effective power output. Here, we first reveal that the weak Pb-I bond in I-based perovskite is prone to breakage under UV photocatalysis, leading to serious degradation of the SnO2/perovskite interface. We introduced a chlorine-rich mixed-halide perovskite interlayer (ClMPI), which possesses an excellent tolerance to photocatalysis owing to the strong Pb-Cl bond, between the SnO2 and I-based perovskite. The ClMPI-based device achieves an enhanced efficiency of up to 21.01% (certified 20.17%). Most importantly, the resultant devices can maintain >94% of their initial performance after 180 h under outdoor solar irradiation, >80% after 500 h under UV irradiation, and 500 h under continuous full spectrum illumination at their maximum power points.

10.
Nanotechnology ; 31(8): 085401, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703224

RESUMEN

The performance of hybrid perovskite solar cells (PSCs) is significantly influenced by the crystallization and morphology of perovskite films. Herein, a novel method of CsPbBr3 quantum dots (QDs) assisted nucleation is applied to prepare high quality solution-processed methylammonium lead iodide (MAPbI3) films by employing CsPbBr3 QDs as an additive into diethyl ether anti-solvent. The appropriate amount of CsPbBr3 QDs can act as effective heterogeneous nucleation centers, leading to the formation of smooth and pinhole-free perovskite films with increased grain size. Furthermore, the growth direction of MAPbI3 grains is regulated by CsPbBr3 QDs, exhibiting preferential orientation of (110) plane. Therefore, the MAPbI3 films with CsPbBr3 QDs modification show reduced defects and increased carrier lifetime. As a result, the champion PSC with a maximum power conversion efficiency (PCE) up to 20.17% is achieved and 85% of its initial PCE is maintained after aging 1000 h at room temperature under a relative humidity of 50%. This work demonstrates a feasible way to prepare high quality perovskite films for optoelectronic applications.

11.
Adv Mater ; 31(33): e1902543, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31231879

RESUMEN

Currently, photovoltaic/electroluminescent (PV/EL) perovskite bifunctional devices (PBDs) exhibit poor performance due to defects and interfacial misalignment of the energy band. Interfacial energy-band engineering between the perovskite and hole-transport layer (HTL) is introduced to reduce energy loss, through adding corrosion-free 3,3'-(2,7-dibromo-9H-fluorene-9,9-diyl) bis(n,n-dimethylpropan-1-amine) (FN-Br) into a HTL free of lithium salt. This strategy can turn the n-type surface of perovskite into p-type and thus correct the misalignment to form a well-defined N-I-P heterojunction. The tailored PBD achieves a high PV efficiency of up to 21.54% (certified 20.24%) and 4.3% EL external quantum efficiency. Free of destructive additives, the unencapsulated devices maintain >92% of their initial PV performance for 500 h at maximum power point under standard air mass 1.5G illumination. This strategy can serve as a general guideline to enhance PV and EL performance of perovskite devices while ensuring excellent stability.

12.
ACS Appl Mater Interfaces ; 11(3): 2935-2943, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30585488

RESUMEN

Multicomponent quasi-two-dimensional perovskites (Q-2DPs) have efficient luminescence and improved stability, which are highly desirable for light-emitting diode and perovskite solar cell (PSC). However, the lack of radiative recombination at room temperature is still not well understood and the performance of PSC is not good enough as well. The open-circuit voltage ( VOC) is even lower than that of three-dimensional (3D) PSC with a narrower band gap. In this work, we study the energy transfer of excitons between their multiple components by time-resolved photoluminescence and find that charge transfer from high-energy states to low-energy state is gradually suppressed during elevating temperature owing to trap-mediated recombination. This may reveal the bottleneck of luminescence at room temperature in Q-2DPs, leading to large photovoltage loss in 2D PSC. Therefore, we develop a p-i-n bulk heterojunction (BHJ) structure to reduce the nonradiative recombination and obtain high VOC of 1.18 V for (PMA)2MA4Pb5I15Cl (33.3% PMA) BHJ device, much higher than that of the planar counterparts. The enhanced efficiency is attributed to the improved exciton dissociation via BHJ interface. Our results provide an important step toward high VOC and stable 2D PSCs, which could be used for tandem solar cell and colorful photovoltaic windows.

13.
Small ; 14(50): e1803350, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30417558

RESUMEN

Hybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established. FAL is not only an effective antisolvent candidate for surface modification, but also a large dipole molecule (2.84 Debye) with directional field for charge separation. Density functional theory calculation reveals that the nondestructive properties are attributed to both the conjugated amine in aromatic ring and the para-fluoro-substituent. A hot vapor assisted colloidal process is employed for the post-treatment. The molecular passivation yields an ultrathin protection layer with a hydrophobic fluoro-substituent tail and thus enhances the stability and optoelectronic properties. FAL post-treated perovskite solar cell (PSC) delivers a 20.48% power conversion efficiency under ambient conditions. Micro-photoluminescence reveals that passivation activates the dark defective state at the surface and interface, delivering the impact picture of boundary on the local carriers. This work demonstrates a generic nondestructive chemical approach for improving the performance and stability of PSCs.

14.
ACS Appl Mater Interfaces ; 10(26): 22320-22328, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29889489

RESUMEN

Solution-processed organometallic halide perovskites have obtained rapid development for light-emitting diodes (LEDs) and solar cells (SCs). These devices are fabricated with similar materials and architectures, leading to the emergence of perovskite-based light-emitting solar cells (LESCs). The high quality perovskite layer with reduced nonradiative recombination is crucial for achieving a high performance device, even though the carrier behaviors are fundamentally different in both functions. Here CH3NH3PbBr3 quantum dots (QDs) are first introduced into the antisolvent in solution phase, serving as nucleation centers and inducing the growth of CH3NH3PbI3 films. The heterogeneous nucleation based on high lattice matching and a low free-energy barrier significantly improves the crystallinity of CH3NH3PbI3 films with decreased grain sizes, resulting in longer carrier lifetime and lower trap-state density in the films. Therefore, the LESCs based on the CH3NH3PbI3 films with reduced recombination exhibit improved electroluminescence and external quantum efficiency. The current efficiency is enhanced by 1 order of magnitude as LEDs, and meanwhile the power conversion efficiency increases from 14.49% to 17.10% as SCs, compared to the reference device without QDs. Our study provides a feasible method to grow high quality perovskite films for high performance optoelectronic devices.

15.
Nanotechnology ; 29(6): 065401, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29219844

RESUMEN

In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(6): 802-805, 2017 Dec 10.
Artículo en Chino | MEDLINE | ID: mdl-29188604

RESUMEN

OBJECTIVE: To study the characteristics, location, and amino acid changes of novel mutations of the Dystrophin gene. METHODS: Twelve patients in whom no deletion or duplication of the Dystrophin gene was detected were analyzed with next-generation sequencing. Fifty healthy adult males were recruited as the controls. RESULTS: All patients were detected with mutations of the Dystrophin gene, which included c.33C>G, c.583C>T, c.1333C>T, c.2593C>T, c.5731A>T, c.7288G>T, c.2803+1G>T, c.10034G>A, c.4289A>G, c.1905_906delAG, c.5017delC, c.5768_5771delAAGA, and c.6261_6262insA. No similar mutations were found among the controls. CONCLUSION: Our data has enriched the mutation spectrum of the Dystrophin gene and may provide an important basis for genetic diagnosis.


Asunto(s)
Distrofina/genética , Mutación , Niño , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino
17.
ACS Nano ; 11(9): 9176-9182, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28858471

RESUMEN

Tin dioxide (SnO2) has been demonstrated as an effective electron-transporting layer (ETL) for attaining high-performance perovskite solar cells (PSCs). However, the numerous trap states in low-temperature solution processed SnO2 will reduce the PSCs performance and result in serious hysteresis. Here, we report a strategy to improve the electronic properties in SnO2 through a facile treatment of the films with adding a small amount of graphene quantum dots (GQDs). We demonstrate that the photogenerated electrons in GQDs can transfer to the conduction band of SnO2. The transferred electrons from the GQDs will effectively fill the electron traps as well as improve the conductivity of SnO2, which is beneficial for improving the electron extraction efficiency and reducing the recombination at the ETLs/perovskite interface. The device fabricated with SnO2:GQDs could reach an average power conversion efficiency (PCE) of 19.2 ± 1.0% and a highest steady-state PCE of 20.23% with very little hysteresis. Our study provides an effective way to enhance the performance of perovskite solar cells through improving the electronic properties of SnO2.

18.
Adv Sci (Weinh) ; 4(8): 1700018, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28852620

RESUMEN

In this Communication, a self-organization method of [6,6]-phenyl-C61-butyric acid 2-((2-(dimethylamino)-ethyl) (methyl)amino)ethyl ester (PCBDAN) interlayer in between 6,6-phenyl C61-butyric acid methyl ester (PCBM) and indium tin oxide (ITO) has been proposed to improve the performance of N-I-P perovskite solar cells (PSCs). The introduction of self-organized PCBDAN interlayer can effectively reduce the work function of ITO and therefore eliminate the interface barrier between electron transport layer and electrode. It is beneficial for enhancing the charge extraction and decreasing the recombination loss at the interface. By employing this strategy, a highest power conversion efficiency of 18.1% has been obtained with almost free hysteresis. Furthermore, the N-I-P PSCs have excellent stability under UV-light soaking, which can maintain 85% of its original highest value after 240 h accelerated UV aging. This self-organization method for the formation of interlayer can not only simplify the fabrication process of low-cost PSCs, but also be compatible with the roll-to-roll device processing on flexible substrates.

19.
Nanotechnology ; 28(20): 205401, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28346215

RESUMEN

Solution-processed polycrystalline perovskite films contribute critically to the high photovoltaic performance of perovskite-based solar cells (PSCs). The inevitable electronic trap states at grain boundaries and intrinsic defects such as metallic lead (Pb0) and halide vacancies in perovskite films cause serious carrier recombination loss. Furthermore, the film can easily decompose into PbI2 in a moist atmosphere. Here, we introduce a simple strategy, through a small increase in methylammonium iodide (CH3NH3I, MAI), molar proportion (5%), for perovskite fabrication in ambient air with ∼50% relative humidity. Analysis of the morphology and crystallography demonstrates that excess MAI significantly promotes grain growth without decomposition. X-ray photoemission spectroscopy shows that no metallic Pb0 exists in the perovskite film and the I/Pb ratio is improved. A time-resolved photoluminescence measurement indicates efficient suppression of non-radiative recombination in the perovskite layer. As a result, the device yields improved power conversion efficiency from 14.06% to 18.26% with reduced hysteresis and higher stability under AM1.5G illumination (100 mW cm-2). This work strongly provides a feasible and low-cost way to develop highly efficient PSCs in ambient air.

20.
ACS Appl Mater Interfaces ; 8(50): 34612-34619, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998099

RESUMEN

Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C60-bis) in an inverted p-i-n architecture. The devices with an ultrathin C60-bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C60-bis, due to a favorable energy level alignment between the CH3NH3PbI3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C60-bis become better under indoor humidity conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...