Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Heliyon ; 10(8): e29603, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655348

RESUMEN

Background: Predicting the severity of acute pancreatitis (AP) early poses a challenge in clinical practice. While there are well-established clinical scoring tools, their actual predictive performance remains uncertain. Various studies have explored the application of machine-learning methods for early AP prediction. However, a more comprehensive evidence-based assessment is needed to determine their predictive accuracy. Hence, this systematic review and meta-analysis aimed to evaluate the predictive accuracy of machine learning in assessing the severity of AP. Methods: PubMed, EMBASE, Cochrane Library, and Web of Science were systematically searched until December 5, 2023. The risk of bias in eligible studies was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Subgroup analyses, based on different machine learning types, were performed. Additionally, the predictive accuracy of mainstream scoring tools was summarized. Results: This systematic review ultimately included 33 original studies. The pooled c-index in both the training and validation sets was 0.87 (95 % CI: 0.84-0.89) and 0.88 (95 % CI: 0.86-0.90), respectively. The sensitivity in the training set was 0.81 (95 % CI: 0.77-0.84), and in the validation set, it was 0.79 (95 % CI: 0.71-0.85). The specificity in the training set was 0.84 (95 % CI: 0.78-0.89), and in the validation set, it was 0.90 (95 % CI: 0.86-0.93). The primary model incorporated was logistic regression; however, its predictive accuracy was found to be inferior to that of neural networks, random forests, and xgboost. The pooled c-index of the APACHE II, BISAP, and Ranson were 0.74 (95 % CI: 0.68-0.80), 0.77 (95 % CI: 0.70-0.85), and 0.74 (95 % CI: 0.68-0.79), respectively. Conclusions: Machine learning demonstrates excellent accuracy in predicting the severity of AP, providing a reference for updating or developing a straightforward clinical prediction tool.

2.
BMC Cancer ; 24(1): 292, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439022

RESUMEN

PANoptosis is a specific type of inflammatory programmed cell death (PCD) modality that can be involved in three key modes of cellular programmed cell death-pyroptosis, apoptosis and necroptosis. We analyzed PANoptosis activity in three common renal cell carcinoma subtypes (Clear cell renal cell carcinoma, Papillary renal cell carcinoma, and Chromophobe renal cell carcinoma) separately and constructed a new PANoptosis immunity index (PANII). In three renal cell carcinomas, we found that PANII was an effective predictor of immunotherapy efficacy in KIRC, KIRP and KICH, and the high PANII group was characterized by high immune infiltration and sensitivity to immunotherapy, while the low PANII group was prone to immune escape and immunotherapy resistance. We performed molecular docking prediction of each core protein comprising PANII and identified natural small molecule compounds with the highest affinity to target proteins. In addition, we found that down-regulation of PYCARD inhibited the proliferation and migration of renal clear cell carcinoma cells by in vitro functional assays, suggesting that PYCARD could be a novel target for renal clear cell carcinoma therapy. Our findings that the PANoptosis characterization-based index (PANII) helps to elucidate the tumor microenvironmental features of three common renal cell carcinoma subtypes and identify patient populations that will benefit from immunotherapy, providing a new tool for the clinical diagnosis and treatment of patients with intermediate- and advanced-stage renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/terapia , Simulación del Acoplamiento Molecular , Inmunoterapia , Apoptosis , Neoplasias Renales/terapia
3.
J Pathol ; 263(1): 99-112, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411280

RESUMEN

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/metabolismo , Fosforilación , Proteína Quinasa D2 , Neoplasias Esofágicas/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Serina , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Desmogleína 2/genética , Desmogleína 2/metabolismo
4.
Vaccines (Basel) ; 12(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38400134

RESUMEN

Bladder cancer, a common malignancy of the urinary system, is routinely treated with radiation, chemotherapy, and surgical excision. However, these strategies have inherent limitations and may also result in various side effects. Immunotherapy has garnered considerable attention in recent years as a novel therapeutic approach. It harnesses and activates the patient's immune system to recognize and eliminate cancer cells, which not only prolongs therapeutic efficacy but also minimizes the toxic side effects. Several immune checkpoint inhibitors and cancer vaccines have been developed for the treatment of bladder cancer. Whereas blocking immune checkpoints on the surface of tumor cells augments the effect of immune cells, immunization with tumor-specific antigens can elicit the production of anti-tumor immune effector cells. However, there are several challenges in applying immunotherapy against bladder cancer. For instance, the efficacy of immunotherapy varies considerably across individual patients, and only a small percentage of cancer patients are responsive. Therefore, it is crucial to identify biomarkers that can predict the efficacy of immunotherapy. Pelvic lymph nodes are routinely dissected from bladder cancer patients during surgical intervention in order to remove any metastatic tumor cells. However, some studies indicate that pelvic lymph node dissection may reduce the efficacy of immunotherapy by damaging the immune cells. Therefore, the decision to undertake pelvic lymph node removal should be incumbent on the clinical characteristics of individual patients. Thus, although immunotherapy has the advantages of lower toxic side effects and long-lasting efficacy, its application in bladder cancer still faces challenges, such as the lack of predictive biomarkers and the effects of pelvic lymph node dissection. Further research is needed to explore these issues in order to improve the efficacy of immunotherapy for bladder cancer.

5.
Environ Toxicol ; 39(5): 3238-3252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361268

RESUMEN

Hormones promote the progression of prostate cancer (PRCA) through the activation of a complex regulatory network. Inhibition of hormones or modulation of specific network nodes alone is insufficient to suppress the entire oncogenic network. Therefore, it is imperative to elucidate the mechanisms underlying the occurrence and development of PRCA in order to identify reliable diagnostic markers and therapeutic targets. To this end, we used publicly available data to analyze the potential mechanisms of hormone-stimulated genes in PRCA, construct a prognostic model, and assess immune infiltration and drug sensitivity. The single-cell RNA-sequencing data of PRCA were subjected to dimensionality reduction clustering and annotation, and the cells were categorized into two groups based on hormone stimulus-related scores. The differentially expressed genes between the two groups were screened and incorporated into the least absolute shrinkage and selection operator machine learning algorithm, and a prognostic model comprising six genes (ZNF862, YIF1A, USP22, TAF7, SRSF3, and SPARC) was constructed. The robustness of the model was validation through multiple methods. Immune infiltration scores in the two risk groups were calculated using three different algorithms. In addition, the relationship between the model genes and immune cell infiltration, and that between risk score and immune cell infiltration were analyzed. Drug sensitivity analysis was performed for the model genes and risk score using public databases to identify potential candidate drugs. Our findings provide novel insights into the mechanisms of hormone-stimulated genes in PRCA progression, prognosis, and drug screening.


Asunto(s)
Neoplasias de la Próstata , Factores Asociados con la Proteína de Unión a TATA , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata/genética , Próstata , Evaluación Preclínica de Medicamentos , Hormonas , Factor de Transcripción TFIID , Factores de Empalme Serina-Arginina
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123793, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141506

RESUMEN

Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical method which has been applied in many fields, and the reproducibility of the substrate is important for reliable SERS analysis. In present work, an innovative method inspired by the flower planting process is put forward to acquire gold nanoflower (AuNF) SERS substrate. Three steps (digging holes, sowing the gold nanoseeds and seeds grow into gold nanoflowers) are included in the substrate fabrication process, and the influence of preparing conditions (like reacting time and Na3Au(SO3)2 concentration) on the substrate morphology and SERS performance are investigated. The acquired AuNF substrate not only exhibits good SERS performance but also possesses excellent reproducibility while being used to detect the rhodamine 6G (R6G) molecular. The relative standard deviation (RSD) of Raman signals among substrates acquired in distinct batches (substrate-to-substrate) is as low as 6.67 %. Since the AuNF substrate is prepared by the wet chemistry route based on seed-mediated growth and there are no expensive reagents or complicated process used, the new process to obtain AuNF substrate is cost-effective and easy to scale up.

7.
ACS Pharmacol Transl Sci ; 6(12): 1909-1923, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093834

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity that is typically characterized by intrahepatic ectopic steatosis. Nowadays, NAFLD has surpassed viral hepatitis and become the most common chronic liver disease worldwide, which poses a great threat to human health. Silibinin (Sil), a well-known natural product, has been widely used in clinical treatment for liver disorders and exhibited therapeutic potential for NAFLD. However, the suitability of Sil for NAFLD treatment still requires further investigation due to its limited absorption and low bioavailability. This study aimed to construct a Sil-loaded liposome (Sil-Lip) to overcome the limitations of Sil, thereby enhancing its beneficial effects on NAFLD and then investigate the underlying mechanisms of action of Sil-Lip. Herein, Sil-Lip was fabricated by a well-established thin-film dispersion method and carefully characterized, followed by evaluating their therapeutic efficacy using high-fat diet-induced NAFLD mice and free fatty acid -stimulated HepG2 cells. Then, liver transcriptome analysis and 16S ribosomal RNA (16S rRNA) sequencing were utilized to elucidate the potential mechanisms of action of Sil-Lip. Our data indicated that Sil-Lip harbored good gastrointestinal tract stability, mucus layer permeation, and excellent oral absorption and bioavailability. In vivo and in vitro NAFLD models demonstrated that Sil-Lip had better effects in alleviating lipid metabolism disorders, insulin resistance, and inflammation than did Sil alone. Further investigations revealed that the beneficial effects of Sil-Lip were mediated by modulating intrahepatic insulin resistance-related and nuclear factor-kappa B (NF-κB) signaling pathways and extrahepatic gut microbiota. Our study confirmed that Sil-Lip can effectively improve the absorption and bioavailability of Sil, resultantly potentiating its ameliorative effects on NAFLD through modulating intrahepatic insulin resistance-related and NF-κB signaling pathways and extrahepatic gut microbiota.

8.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3628-3643, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37805843

RESUMEN

Small-molecule anticancer drugs inhibited tumor growth based on targeted inhibition of specific proteins, while most of oncogenic proteins are "undruggable". Proteolysis targeting chimeras (PROTAC) is an attractive and general strategy for treating cancer based on targeted degradation of oncogenic proteins. This review briefly describes the peptide-based PTOTAC and small molecule-based PROTAC. Subsequently, we summarize the development of targeted delivery of PROTAC, such as targeting molecule-mediated targeted delivery of PROTAC, nanomaterial-mediated targeted delivery of PROTAC and controllable activation of small-molecular PROTAC prodrug. Such strategies show potential application in improving tumor selectivity, overcoming off-target effect and reducing biotoxicity. At the end, the druggability of PROTAC is prospected.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Quimera Dirigida a la Proteólisis , Neoplasias/tratamiento farmacológico , Proteolisis
9.
Biomed J ; : 100662, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37774793

RESUMEN

BACKGROUND: Early detection of cancer remains an unmet need in clinical practice, and high diagnostic sensitivity and specificity biomarkers are urgently required. Here, we attempted to identify secreted proteins encoded by super-enhancer (SE)-driven genes as diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC). METHODS: We conducted an integrative analysis of multiple data sets including ChIP-seq data, secretome data, CCLE data and GEO data to screen secreted proteins encoded by SE-driven genes. Using ELISA, we further identified up-regulated secreted proteins through a small size of clinical samples and verified in a multi-centre validation stage (345 in test cohort and 231 in validation cohort). Receiver operating characteristic curves were used to calculate diagnostic accuracy. Artificial intelligence (AI) method named gradient boosting machine (GBM) were applied for model construction to enhance diagnostic accuracy. RESULTS: Serum EFNA1 and MMP13 were identified, and showed significantly higher levels in ESCC patients compared to normal controls. An integrated Five-Biomarker Panel (iFBPanel) established by combining EFNA1, MMP13, carcino-embryonic antigen, Cyfra21-1 and squmaous cell carcinoma antigen had AUCs of 0.881 and 0.880 for ESCC in test and validation cohorts, respectively. Importantly, the iFBPanel also exhibited good performance in detecting early-stage ESCC patients (0.872 and 0.864). Furthermore, the iFBPanel was further empowered by AI technology which showed excellent diagnostic performance in early-stage ESCC (0.927 and 0.907). CONCLUSIONS: Our study suggested that serum EFNA1 and MMP13 could potentially assist ESCC detection, and provided an easy-to-use detection model that might help the diagnosis of early-stage ESCC.

10.
Open Life Sci ; 18(1): 20220716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744455

RESUMEN

The extracellular matrix (ECM) has been strongly correlated with cancer progression in various tumor types. However, the specific mechanisms underlying ECM-associated tumor behaviors remain unclear. In this study, we found an enriched distribution of fibrin in tumor tissues obtained from high-grade non-small cell lung cancer (NSCLC) patients. For further investigation, we established an in vitro 3D culture system using fibrin gel and found that NSCLC cells grown in this system exhibited increased stemness and tumorigenesis. Mechanistically, we demonstrated that fibrin facilitated the activation of the phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) signaling pathway through integrin ß1. Furthermore, we found that blocking integrin ß1 signals enhanced the tumor suppressive effects of chemotherapy, providing a novel approach for clinical therapy for NSCLC.

11.
J Pathol ; 261(1): 105-119, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550813

RESUMEN

Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Metaloproteinasa 9 de la Matriz , Neoplasias Cutáneas/genética , Microambiente Tumoral , Transcriptoma , Linfoma Cutáneo de Células T/complicaciones , Linfoma Cutáneo de Células T/diagnóstico , Linfoma Cutáneo de Células T/patología , Macrófagos/patología , Perfilación de la Expresión Génica
12.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423402

RESUMEN

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Asunto(s)
Decapodiformes , Interleucina-17 , Vibriosis , Vibrio , Animales , Humanos , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/inmunología , Filogenia , Vibriosis/inmunología , Vibriosis/veterinaria , China
13.
Front Bioeng Biotechnol ; 11: 1189010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324421

RESUMEN

Background: In recent years, the impact of bacterial biofilms on traumatic wounds and the means to combat them have become a major research topic in the field of medicine. The eradication of biofilms formed by bacterial infections in wounds has always been a huge challenge. Herein, we developed a hydrogel with the active ingredient berberine hydrochloride liposomes to disrupt the biofilm and thereby accelerate the healing of infected wounds in mice. Methods: We determined the ability of berberine hydrochloride liposomes to eradicate the biofilm by means of studies such as crystalline violet staining, measuring the inhibition circle, and dilution coating plate method. Encouraged by the in vitro efficacy, we chose to coat the berberine hydrochloride liposomes on the Poloxamer range of in-situ thermosensitive hydrogels to allow fuller contact with the wound surface and sustained efficacy. Eventually, relevant pathological and immunological analyses were carried out on wound tissue from mice treated for 14 days. Results: The final results show that the number of wound tissue biofilms decreases abruptly after treatment and that the various inflammatory factors in them are significantly reduced within a short period. In the meantime, the number of collagen fibers in the treated wound tissue, as well as the proteins involved in healing in the wound tissue, showed significant differences compared to the model group. Conclusion: From the results, we found that berberine liposome gel can accelerate wound healing in Staphylococcus aureus infections by inhibiting the inflammatory response and promoting re-epithelialization as well as vascular regeneration. Our work exemplifies the efficacy of liposomal isolation of toxins. This innovative antimicrobial strategy opens up new perspectives for tackling drug resistance and fighting wound infections.

14.
ACS Pharmacol Transl Sci ; 6(6): 878-891, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37325446

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a kind of life-threatening interstitial lung disease characterized by progressive dyspnea with accurate pathogenesis unknown. At present, heat shock protein inhibitors are gradually used to treat IPF. Silybin, a heat shock protein C-terminal inhibitor, has high safety and good application prospects. In this work, we have developed a silybin powder able to be used for inhalation administration for the treatment of IPF. Silybin powder was prepared by the spray drying method and identified using cascade impactometry, particle size, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. A rat model of bleomycin-induced IPF was used to assess the effect of inhaled silybin spray-dried powder. Lung hydroxyproline content, wet weight, histology, inflammatory factor expression, and gene expression were examined. The results showed that inhaled silybin spray-dried powder alleviated inflammation and fibrosis, limited hydroxyproline accumulation in the lungs, modulated gene expression in the development of IPF, and improved postoperative survival. The results of this study suggest that silybin spray-dried powder is an attractive candidate for the treatment of IPF.

15.
Viruses ; 15(6)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376659

RESUMEN

Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Iridovirus , Ranavirus , Animales , Peces , Ranavirus/genética , Causalidad , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/prevención & control
16.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37018146

RESUMEN

SUMMARY: We developed the eccDB database to integrate available resources for extrachromosomal circular DNA (eccDNA) data. eccDB is a comprehensive repository for storing, browsing, searching, and analyzing eccDNAs from multispecies. The database provides regulatory and epigenetic information on eccDNAs, with a focus on analyzing intrachromosomal and interchromosomal interactions to predict their transcriptional regulatory functions. Moreover, eccDB identifies eccDNAs from unknown DNA sequences and analyzes the functional and evolutionary relationships of eccDNAs among different species. Overall, eccDB offers web-based analytical tools and a comprehensive resource for biologists and clinicians to decipher the molecular regulatory mechanisms of eccDNAs. AVAILABILITY AND IMPLEMENTATION: eccDB is freely available at http://www.xiejjlab.bio/eccDB.


Asunto(s)
Cromatina , ADN Circular , Cromatina/genética , Cromosomas , ADN , Secuencia de Bases
17.
Food Chem ; 417: 135906, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913866

RESUMEN

Herein, an electrochemical sensor for single-cell determination of bacteria was developed based on target-triggered click chemistry and fast scan voltammetry (FSV). In it, bacteria not only are the detection target, but also can use their own metabolism to achieve first-level signal amplification. More electrochemical labels were immobilized on functionalized 2D nanomaterials to achieve second-level signal amplification. At 400 V/s, FSV can achieve third-level signal amplification. The linear range and limit of quantification (LOQ) are 1 âˆ¼ 108 CFU/mL and 1 CFU/mL, respectively. When the reaction time of E. coli-instructed Cu2+ reduction is extended to 120 min, PCR-free single-cell determination of E. coli was achieved by electrochemical method first time. The feasibility of the sensor was verified by analysis of E. coli in seawater and milk samples with recoveries ranging from 94% to 110%. This detection principle is widely applicable, providing a new path for the establishment of single-cell detection strategy for bacteria.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Química Clic/métodos , Técnicas Biosensibles/métodos , Oro , Técnicas Electroquímicas/métodos , Límite de Detección
18.
Anal Chim Acta ; 1248: 340906, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813458

RESUMEN

Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.


Asunto(s)
Técnicas Biosensibles , Vibrio parahaemolyticus , Reproducibilidad de los Resultados , Óxido de Magnesio , Espectroscopía de Resonancia Magnética , Técnicas Biosensibles/métodos
19.
J Invertebr Pathol ; 196: 107852, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36384189

RESUMEN

Decapod iridescent virus 1 (DIV1) is an emerging viral pathogen that infects diverse freshwater and marine crustacean species and causes considerable economic losses that seriously threaten crustacean farming and has caused enormous financial losses in recent years. In this study, we detected DIV1 from diseased crabs, with clinical symptoms such as loss of vitality and white gill filaments with edema, in a Marsupenaeus japonicus and Portunus trituberculatus polyculture pond. Four DIV1 isolates from crab samples (two isolates) and shrimp samples (two isolates) were sequenced and assembled successfully. Molecular characterization and phylogenetic analysis of the four DIV1 isolates were conducted. The DIV1 isolates from crab samples have a close genetic relationship with shrimp DIV1s, indicating the viruses share the same ancestor with those from shrimps. Our study provides valuable insights into disease prevention and control of the shrimp-crab polyculture system.


Asunto(s)
Braquiuros , Decápodos , Penaeidae , Animales , Filogenia , Alimentos Marinos
20.
Artículo en Inglés | MEDLINE | ID: mdl-36070448

RESUMEN

Cordyceps sinensis, as an expensive traditional Chinese medicine and edible fungus mycelium, lacks an effective quality evaluation method, especially and cultivated Cordyceps sinensis. In this study, a feasible workflow method was developed for traceability evaluation of wild and cultivated Cordyceps sinensis, based on mass spectrometry-based metabolomics. Mass spectrometry data were firstly acquired from Cordyceps sinensis, samples by liquid chromatography-quadrupole and time of flight mass spectrometry. Characteristic mass spectrometry peaks were extracted by applying the MZmine. Then significant markers were obtained from Cordyceps sinensis samples by orthogonal partial least square discriminant analysis. Then, identification of significant markers were identified by MS-FINDER data analytics. The results showed that Changdu, the other four wild origins (Naqu, Xinghai, Yushu and Guoluo) and cultivated samples could be significantly distinguished. This identified significant markers of Cordyceps sinensis, including 174 special significant markers for the wild samples, 204 special significant markers for the cultivated samples and 87 share significant markers. Number of 87 shared significant markers were identified in the wild and cultivated Cordyceps sinensis, especially 28 confident significant compounds, such as adenosine, riboflavin, tyrosine, arginine and glutamine. These shared significant markers might support the quality control of multi-targets of Cordyceps sinensis, compared with a single target in the Chinese Pharmacopoeia. The special significant markers indicated that cultivated Cordyceps sinensis was different from the wild based on mass spectrometry-based metabolomics. In the comparison of chromatographic fingerprint technology, it was found that the established feasible workflow method was easy to acquire significant markers and traceability of Cordyceps sinensis. This feasible workflow method has great potential to be successful for comprehensive and traceability evaluation of the wild and cultivated Cordyceps sinensis.


Asunto(s)
Cordyceps , Cordyceps/química , Flujo de Trabajo , Espectrometría de Masas , Metabolómica , Micelio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA