Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38635119

RESUMEN

PURPOSE: Currently, the rigid instruments used for laparoscopic radical resection of prostate cancer not only have the risk of damage to tissues, blood vessels, and nerves, but their limited freedom will also cause surgical blind areas. Soft robots are expected to solve these issues due to inherent flexibility, compliance, and safe interaction with tissues and organs. In addition, to achieve high surgical accuracy and provide precise guidance for surgeons, the navigation method should be studied for the soft robot. METHODS: A soft robot system for single-port transvesical radical prostatectomy (STRP) is developed, and a navigation method combining fiber Bragg gratings and electromagnetic tracking is proposed for the soft robot. To validate the soft robot design and the effectiveness of the navigation method, different groups of experiments are conducted. RESULTS: The proposed navigation method can achieve accurate location and shape sensing of the soft manipulator. The experiments show that the maximum tip sensing error is 2.691 mm, which is 5.38 % of the robot length for static configurations, and that the average tip sensing error is 1.966 mm, which corresponds to 3.93 % of the robot length for dynamic scenarios. Additionally, phantom tests demonstrate that the designed soft robot can enter the prostate through navigation guidance in a master-slave control mode and cover the entire prostate space. CONCLUSIONS: The designed soft robot system, due to its soft structure, good flexibility, and accurate navigation, is expected to improve surgical safety and precision, thereby exhibiting significant potential for STRP.

2.
Virol J ; 21(1): 62, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454522

RESUMEN

BACKGROUND: In China, respiratory syncytial virus (RSV) infections traditionally occur during the spring and winter seasons. However, a shift in the seasonal trend was noted in 2020-2022, during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: This study investigated the seasonal characteristics of RSV infection in children hospitalized with acute lower respiratory tract infections (ALRTIs). The RSV epidemic season was defined as RSV positivity in > 10% of the hospitalized ALRTI cases each week. Nine RSV seasons were identified between 2013 and 2022, and nonlinear ordinary least squares regression models were used to assess the differences in year-to-year epidemic seasonality trends. RESULTS: We enrolled 49,658 hospitalized children diagnosed with ALRTIs over a 9-year period, and the RSV antigen-positive rate was 15.2% (n = 7,566/49,658). Between 2013 and 2022, the average onset and end of the RSV season occurred in week 44 (late October) and week 17 of the following year, respectively, with a typical duration of 27 weeks. However, at the onset of the COVID-19 pandemic, the usual spring RSV peak did not occur. Instead, the 2020 epidemic started in week 32, and RSV seasonality persisted into 2021, lasting for an unprecedented 87 weeks before concluding in March 2022. CONCLUSIONS: RSV seasonality was disrupted during the COVID-19 pandemic, and the season exhibited an unusually prolonged duration. These findings may provide valuable insights for clinical practice and public health considerations.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Pandemias , Estaciones del Año , China/epidemiología , COVID-19/epidemiología
4.
Heliyon ; 10(6): e27970, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533002

RESUMEN

With the target of achieving carbon peaking and neutrality in the power sector in China, both State Grid and China Southern Power Grid have made plans of a rapid increase of renewables in future years towards 2060. However, considering the interactions between the power system and meteorological, society factors, whether those plans would lead to CO2 emission peak in 2030 and carbon neutrality in 2060 is still questionable and needs further analysis. Therefore, a Power-Meteorology-Society System is formulated and interactions between these factors will impact the CO2 emission of the power system is studied. Case study shows that these environmental, social factors as well as their interactions will have significant negative impact to the CO2 emission reduction in China's power grid; With current trend of generation and transmission development and higher-than-expected CO2 emission, while the grid could still reach its target of carbon peak in 2030, there will be some challenge for the grid to reach carbon neutrality in the year 2060. Based on that, the authors analyze some potential solutions such as transmission construction, energy storage and the Carbon Capture, Utilization and Storage (CCUS), and try to find a relatively cost-benefit path to reach carbon-neutrality for the grid in 2060.

5.
Genes (Basel) ; 15(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540424

RESUMEN

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Asunto(s)
Bivalvos , Chlorella , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Chlorella/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Ácidos Grasos/metabolismo
6.
Int Urol Nephrol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480602

RESUMEN

OBJECTIVE: Holmium laser percutaneous nephrolithotripsy was simulated by porcine kidney calculus model in vitro to investigate thermal damage of renal tissue by different energy parameters of the holmium laser. METHODS: We placed human kidney calculus specimen in fresh vitro porcine kidney, then insert thermocouple temperature probes into the submucosa of the renal pelvis and reheated in a 37 °C water bath. A percutaneous nephrological sheath was used to penetrate the renal parenchyma with a moderate irrigation rate of 30 ml/min at 18 â„ƒ. The Holmium laser was used to fragment the stones under a nephroscope, and the temperature was recorded. RESULTS: The four independent models were lithotripsy with 30 W and 60 W laser for 5 and 10 min, respectively; the mean temperature of 30 W vs. 60 W within 5 min was 36.06 °C vs. 39.21 °C (t = 5.36, P < 0.01) and the highest temperature was 43.60 °C vs. 46.60 °C; the mean temperature of 30 W vs. 60 W within 10 min was 37.91 °C vs. 40.13 â„ƒ (t = 5.28, P < 0.01), maximum temperature 46.80 â„ƒ vs. 49.20 â„ƒ. Pathologically, each kidney was observed to have different degrees of thermal damage lesions, and the higher power and longer time the more severe the injury, but the injury was mainly limited to the uroepithelial and subepithelial tissues, with rare damage to renal tubules. CONCLUSION: The higher laser excitation power and longer duration raised the intrarenal temperature significantly and caused a certain degree of thermal damage to the kidney tissue, but overall it was found to be safe and reliable. Urologists can avoid further side effects through surgical expertise.

7.
Int J Biol Macromol ; 264(Pt 1): 130270, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423423

RESUMEN

Fire alarm systems are essential for protecting lives and properties from fire hazards. However, most of the existing fire alarm nanopapers rely on the resistance reduction after heating, which requires direct contact with the flame. In this study, we present a novel fire alarm nanopaper (CMPA) based on heat-triggered shape recovery. The CMPA is composed of hydroxypropyl methyl cellulose (HPMC) as the matrix and 2D nanomaterials M(OH)(OCH3) as fillers. When the temperature of CMPA exceeded the glass transition, the thrice-folded CMPA-1.0 flattened in 30s and connected to the alarm circuit based on its conductive surface. According to the results, the CMPA-1.0 with a thickness of about 0.2 mm had an efficient electromagnetic shielding of 42.1 dB. Moreover, the CMPA-1.0 self-extinguished rapidly after being ignited with its original shape preserved. The peak heat release rate of CMPA-1.0 was 108.9 W/g, which was 61.9 % lower than that of HPMC. Furthermore, the thermal conductivity of CMPA-1.0 reached to 0.317 W m-1 K-1, which was 40.8 % higher than that of HPMC, reducing the heat accumulation effectively. This work shows that CMPA is an ideal material for sensitive and safe early fire alarm, and the strategy based on heat-triggered shape recovery is promising in fire alarm application.


Asunto(s)
Celulosa , Retardadores de Llama , Calor , Dopamina , Derivados de la Hipromelosa
8.
Neurosci Bull ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311706

RESUMEN

GJB2 gene mutations are the most common causes of autosomal recessive non-syndromic hereditary deafness. For individuals suffering from severe to profound GJB2-related deafness, cochlear implants have emerged as the sole remedy for auditory improvement. Some previous studies have highlighted the crucial role of preserving cochlear neural components in achieving favorable outcomes after cochlear implantation. Thus, we generated a conditional knockout mouse model (Cx26-CKO) in which Cx26 was completely deleted in the cochlear supporting cells driven by the Sox2 promoter. The Cx26-CKO mice showed severe hearing loss and massive loss of hair cells and Deiter's cells, which represented the extreme form of human deafness caused by GJB2 gene mutations. In addition, multiple pathological changes in the peripheral auditory nervous system were found, including abnormal innervation, demyelination, and degeneration of spiral ganglion neurons as well as disruption of heminodes in Cx26-CKO mice. These findings provide invaluable insights into the deafness mechanism and the treatment for severe deafness in Cx26-null mice.

9.
Int J Comput Assist Radiol Surg ; 19(2): 209-221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37787938

RESUMEN

PURPOSE: The development of cardiovascular interventional surgery robots can realize master-slave interventional operations, which will effectively solve the problem of surgeons being injured by X-ray radiation. The delivery accuracy and safety of interventional instruments such as guidewire are the most important issues in the development of robotic systems. Most of the current control methods are position control or force feedback control, which cannot take into account delivery accuracy and safety. METHODS: A cardiovascular interventional surgery robotic system integrated force sensors is developed. A novel force/position controller, which includes a radial basis function neural networks-based inner loop position controller and a force-based admittance outer loop controller, is proposed. Furthermore, a series of simulations and vascular model experiments are carried out to demonstrate the feasibility and accuracy of the proposed controller. RESULTS: The designed cardiovascular interventional robot is flexible to enter the target vessel branch. Experimental results indicate that the proposed controller can effectively improve the delivery accuracy of the guidewire and reduce the contact force with the vessel wall. CONCLUSIONS: The proposed controller based on radial basis function neural network and admittance control is effective in improving delivery accuracy and reducing contact force. The algorithm needs to be further validated in vivo experiments.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Procedimientos Quirúrgicos Vasculares/métodos , Diseño de Equipo , Fenómenos Mecánicos
10.
Aging Cell ; 22(11): e13973, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681746

RESUMEN

The GJB2 gene, encoding Connexin26 (Cx26), is one of the most common causes of inherited deafness. Clinically, mutations in GJB2 cause congenital deafness or late-onset progressive hearing loss. Recently, it has been reported that Cx26 haploid deficiency accelerates the development of age-related hearing loss (ARHL). However, the roles of cochlear Cx26 in the hearing function of aged animals remain unclear. In this study, we revealed that the Cx26 expression was significantly reduced in the cochleae of aged mice, and further explored the underlying molecular mechanism for Cx26 degradation. Immunofluorescence co-localization results showed that Cx26 was internalized and degraded by lysosomes, which might be one of the important ways for Cx26 degradation in the cochlea of aged mice. Currently, whether the degradation of Cx26 in the cochlea leads directly to ARHL, as well as the mechanism of Cx26 degradation-related hearing loss are still unclear. To address these questions, we generated mice with Cx26 knockout in the adult cochlea as a model for the natural degradation of Cx26. Auditory brainstem response (ABR) results showed that Cx26 knockout mice exhibited high-frequency hearing loss, which gradually progressed over time. Pathological examination also revealed the degeneration of hair cells and spiral ganglions, which is similar to the phenotype of ARHL. In summary, our findings suggest that degradation of Cx26 in the cochlea accelerates the occurrence of ARHL, which may be a novel mechanism of ARHL.


Asunto(s)
Conexina 26 , Sordera , Presbiacusia , Animales , Ratones , Cóclea/metabolismo , Conexinas/genética , Conexinas/metabolismo , Sordera/congénito , Sordera/genética , Sordera/patología , Ratones Noqueados , Presbiacusia/genética , Presbiacusia/metabolismo , Conexina 26/metabolismo
11.
Neuropeptides ; 102: 102358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562086

RESUMEN

OBJECTIVE: Chinese herbal formulas show considerable therapeutic benefits in dementia. This study specifically explored the protective action of Zishen Huoxue recipe on the neurovascular unit (NVU) of rats with vascular dementia (VD). METHODS: VD rat models were established by permanent bilateral common carotid artery occlusion and treated with Zishen Huoxue recipe. In vitro glucose­oxygen deprivation (OGD)-injured NVU models were established and treated with miR-124-3p agomir or rat medicated serum. The neurological damage, histopathological changes, and neuronal injury in the rat hippocampus were assessed using Morris water maze test and histological stainings. Expression of miR-124-3p was determined using RT-qPCR. The blood-brain barrier/NVU injury, cell pyroptosis, NLRP3 inflammasome activation, and release of inflammatory factors were analyzed mainly by immunofluorescence analysis, TUNEL staining, Western blot, and ELISA. QS-21 (an NLRP3 activator) was used to verify the role of miR-124-3p/NLRP3. RESULTS: Zishen Huoxue recipe ameliorated the learning/memory deficits, neuronal injury, NVU insults, cell pyroptosis, activation of NLRP3 inflammasome, and extensive secretion of lactate dehydrogenase/IL-1ß/IL-18 in VD rats. miR-124-3p was downregulated in VD rats but upregulated after treatment of this recipe. miR-124-3p overexpression ameliorated NVU insults, reduced cell pyroptosis, lowered NLRP3 inflammasome activation, and suppressed inflammatory responses in OGD-injured NVU models. NLRP3 inflammasome activation partly counteracted the amelioration effect of miR-124-3p on pyroptosis. Zishen Huoxue recipe could upregulate miR-124-3p to suppress pyroptosis and protect NVU function. CONCLUSION: Zishen Huoxue recipe can upregulate miR-124-3p expression to repress the inflammatory cascade-evoked pyroptosis, thereby protecting against neuronal injury in the NVU of VD rats.


Asunto(s)
Demencia Vascular , MicroARNs , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Demencia Vascular/tratamiento farmacológico , MicroARNs/metabolismo
12.
IEEE J Biomed Health Inform ; 27(9): 4536-4547, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37363852

RESUMEN

The operating skills of vascular interventionists have an important impact on the effect of surgery. However, current research on behavior recognition and skills learning of interventionists' operating skills is limited. In this study, an innovative deep learning-based multimodal information fusion architecture is proposed for recognizing and analyzing eight common operating behaviors of interventionists. An experimental platform integrating four modal sensors is used to collect multimodal data from interventionists. The ANOVA and Manner-Whitney tests is used for relevance analysis of the data. The analysis results demonstrate that there is almost no significant difference ( p <0.001) between the actions related to the unimodal data, which cannot be used for accurate behavior recognition. Therefore, a study of the fusion architecture based on the existing machine learning classifier and the proposed deep learning fusion architecture is carried out. The research findings indicate that the proposed deep learning-based fusion architecture achieves an impressive overall accuracy of 98.5%, surpassing both the machine learning classifier (93.51%) and the unimodal data (90.05%). The deep learning-based multimodal information fusion architecture proves the feasibility of behavior recognition and skills learning of interventionist's operating skills. Furthermore, the application of deep learning-based multimodal fusion technology of surgeon's operating skills will help to improve the autonomy and intelligence of surgical robotic systems.


Asunto(s)
Aprendizaje Automático , Procedimientos Quirúrgicos Vasculares , Humanos , Cirujanos
13.
Artículo en Chino | MEDLINE | ID: mdl-37253528

RESUMEN

Patients with patulous Eustachian tubes(PET) usually suffer from annoying symptoms, such as tinnitus, autophony and aural fullness, due to the excessive opening of the Eustachian tube. There is no uniform standard of treatment, and conservative therapy combined with"Stepup"surgical intervention strategy is the main treatment. In this article, we reviewed various surgical treatments of patulous Eustachian tube in recent years, including key points of surgical operation, effectiveness, safety and complications. Full communication and evaluation are needed to establish appropriate patients' expectations preoperatively. A "Stepup" treatment strategy will be carried out, including conservative treatment, tympanic membrane surgery, Eustachian tube pharyngeal orifice constriction surgery, Eustachian tube tympanic orifice plug surgery and Eustachian tube muscle surgery, which aims to maintain normal Eustachian tube function and good middle ear ventilation.


Asunto(s)
Enfermedades del Oído , Trompa Auditiva , Otitis Media , Acúfeno , Humanos , Trompa Auditiva/cirugía , Enfermedades del Oído/diagnóstico , Oído Medio , Membrana Timpánica/cirugía
14.
Front Neurol ; 14: 1126444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090970

RESUMEN

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated neuropathy. First-line treatments for CIDP include corticosteroids, intravenous immunoglobulin, and plasma exchange. However, the application is always limited by high costs, effectiveness, and adverse events. This study investigated a new potentially effective and safe therapeutic treatment to alleviate CIDP symptoms and improve the quality of life. In the present case, a 47-year-old rural woman presented with weakness and numbness of progressive extremities. She was diagnosed with CIDP based on abnormal cerebrospinal fluid and electromyography. The patient was treated with intravenous dexamethasone for 1 week and with Huangqi-Guizhi-Wuwu and Bu-Yang-Huan-Wu decoctions for 90 days. Surprisingly, after the treatment, the weakness and numbness were eliminated, and the quality of life improved. The varying INCAT, MRC, and BI scores also reflected the treatment effects. After 8 months of discharge, the symptoms did not relapse during the follow-up. We also searched "traditional Chinese medicine (TCM)" and "CIDP" in PubMed, EMBASE, the Web of Science, the Cochrane Library, the Chinese National Knowledge Infrastructure Databases, Wanfang Data, and the Chongqing Chinese Science and Technology Periodical Database. Finally, only ten studies were included in the literature review. Three studies were randomized controlled trials, and seven were case reports or case series. There were 419 CIDP patients, but all study sites were in China. Nine TCM formulas involving 44 herbs were reported, with Huang Qi (Astragalus membranaceus) being the most important herb. In conclusion, the case and literature demonstrated that TCM treatment might be a more effective, low-cost, and safe option for treating CIDP. Although these preliminary findings are promising, a larger sample size and higher-quality randomized clinical trials are urgently required to confirm our findings.

15.
Natl Sci Rev ; 10(4): nwad009, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36960220

RESUMEN

It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.

16.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901990

RESUMEN

Clinically, thyroid-related diseases such as endemic iodine deficiency and congenital hypothyroidism are associated with hearing loss, suggesting that thyroid hormones are essential for the development of normal hearing. Triiodothyronine (T3) is the main active form of thyroid hormone and its effect on the remodeling of the organ of Corti remain unclear. This study aims to explore the effect and mechanism of T3 on the remodeling of the organ of Corti and supporting cells development during early development. In this study, mice treated with T3 at postnatal (P) day 0 or P1 showed severe hearing loss with disordered stereocilia of the outer hair cells (OHCs) and impaired function of mechanoelectrical transduction of OHCs. In addition, we found that treatment with T3 at P0 or P1 resulted in the overproduction of Deiter-like cells. Compared with the control group, the transcription levels of Sox2 and notch pathway-related genes in the cochlea of the T3 group were significantly downregulated. Furthermore, Sox2-haploinsufficient mice treated with T3 not only showed excess numbers of Deiter-like cells but also a large number of ectopic outer pillar cells (OPCs). Our study provides new evidence for the dual roles of T3 in regulating both hair cells and supporting cell development, suggesting that it is possible to increase the reserve of supporting cells.


Asunto(s)
Pérdida Auditiva , Órgano Espiral , Animales , Ratones , Triyodotironina , Células Ciliadas Auditivas Externas , Cóclea , Hormonas Tiroideas
17.
Int J Biol Macromol ; 237: 124105, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948342

RESUMEN

The development of cereal foods with slow starch digestibility is important for the general improvement of human health. In this study, the quality properties of noodles with added okara, in vitro starch digestibility, and the underlying mechanisms of the influence of okara on noodles were studied. Low concentrations (5 and 10 %) of okara improved the texture, cooking, and sensory properties of the noodles. Okara decreased the rapidly digestible starch (RDS) content, increased the resistant starch (RS) content, and reduced the predicted glycaemic index (pGI) of noodles. The pasting viscosity, thermal stability, and dynamic rheological results indicated that okara improved the starch crystallite stability of wheat flour and viscoelasticity of dough. Moreover, Fourier transform infrared (FTIR) spectroscopy showed that okara promoted the formation of starch-lipid complexes and improved the short-range structural order of starch. Additionally, microstructure imaging and protein network analysis (PNA) indicated that low addition of okara promoted the compactness of the okara-gluten-starch matrix, thus reducing the contact between starch and hydrolytic enzymes. These results reveal the effect of okara on the quality properties and starch digestibility in a starch-gluten complex system.


Asunto(s)
Harina , Almidón , Humanos , Almidón/química , Harina/análisis , Triticum/química , Culinaria , Glútenes/química
18.
Int J Comput Assist Radiol Surg ; 18(4): 753-761, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36580208

RESUMEN

PURPOSE: Continuum robots (CRs) have been developed for maxillary sinus surgery (MSS) in recent years. However, due to the anatomically curved and narrow pathway of the maxillary sinus and the deformable characteristics of the CR, it is still a challenge to accurately approach the target in the sinus. Thus, the CR-assisted MSS demands further research, whether in robotic system design or in reliable motion control. METHODS: A continuum robotic system integrated with essential instruments and sensors for MSS is developed, and the path tracking control of the designed CR is studied. The differential kinematic model of the CR is constructed. By analyzing the potential problem of the traditional Jacobian-based control, an iterative Jacobian transpose-based closed-loop control method is proposed to improve the path tracking performance. To validate the design of the CR and the effectiveness of the proposed control scheme, different groups of experiments are performed. RESULTS: With the proposed method, the path tracking performance of the CR is improved. Compared with the open-loop Jacobian transpose-based control method, the path tracking error of the proposed method is much less. The maxillary sinus phantom tests are conducted to verify the reachability of the designed CR. Given the reference path from the nostril to the target in the maxillary sinus phantom, experiments show a mean error of 0.96 mm. CONCLUSIONS: The designed CR is slender, flexible, and able to smoothly approach the target in a tortuous and constrained environment without colliding with or damaging the surrounding tissue. The designed continuum robotic system and the proposed iterative Jacobian transpose-based closed-loop control strategy have great potential for MSS. The limitations of the proposed method are also discussed.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Seno Maxilar/cirugía , Fantasmas de Imagen , Fenómenos Biomecánicos
19.
Int J Med Robot ; 19(2): e2471, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36251333

RESUMEN

PURPOSE: Endoscopic sinus surgery (ESS) has been recognized as an effective treatment modality for paranasal sinus diseases. Over the past decade, continuum robots (CRs) for ESS have been studied, but there are still some challenges. This paper presents a review on the scientific studies of CRs for ESS. METHODS: Based on the analysis of the anatomical structure of the paranasal sinus, the requirements of CRs for ESS are discussed. Recent studies on rigid robots, handheld flexible robots, and CRs for ESS are presented. Surgical path planning, navigation, and control are also included. RESULTS: Concentric tube CRs and cable-driven CRs have great potential for applications in ESS. The CRs incorporated with multiple replaceable arms with different functions are preferable in ESS. CONCLUSION: Further study on navigation and control is required to improve the performance of CRs for ESS.


Asunto(s)
Senos Paranasales , Rinitis , Robótica , Sinusitis , Humanos , Sinusitis/cirugía , Rinitis/cirugía , Enfermedad Crónica , Senos Paranasales/cirugía , Resultado del Tratamiento , Endoscopía
20.
Patterns (N Y) ; 3(12): 100640, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36569552

RESUMEN

The transition toward carbon-neutral electricity is one of the biggest game changers in addressing climate change since it addresses the dual challenges of removing carbon emissions from the two largest sectors of emitters: electricity and transportation. The transition to a carbon-neutral electric grid poses significant challenges to conventional paradigms of modern grid planning and operation. Much of the challenge arises from the scale of the decision-making and the uncertainty associated with the energy supply and demand. Artificial intelligence (AI) could potentially have a transformative impact on accelerating the speed and scale of carbon-neutral transition, as many decision-making processes in the power grid can be cast as classic, though challenging, machine-learning tasks. We point out that to amplify AI's impact on carbon-neutral transition of the electric energy systems, the AI algorithms originally developed for other applications should be tailored in three layers of technology, markets, and policy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA