RESUMEN
Migratory birds are recently recognized as Vibrio disease vectors, but may be widespread transporters of Vibrio strains. We isolated Vibrio cholerae (V. cholerae) and Vibrio metschnikovii (V. metschnikovii) strains from migratory bird epidemic samples from 2017 to 2018 and isolated V. metschnikovii from migratory bird feces in 2019 from bird samples taken from the Inner Mongolia autonomous region of China. To investigate the evolution of these two Vibrio species, we sequenced the genomes of 40 V. cholerae strains and 34 V. metschnikovii strains isolated from the bird samples and compared these genomes with reference strain genomes. The pan-genome of all V. cholerae and V. metschnikovii genomes was large, with strains exhibiting considerable individual differences. A total of 2,130 and 1,352 core genes were identified in the V. cholerae and V. metschnikovii genomes, respectively, while dispensable genes accounted for 16,180 and 9,178 of all genes for the two strains, respectively. All V. cholerae strains isolated from the migratory birds that encoded T6SS and hlyA were non-O1/O139 serotypes without the ability to produce CTX. These strains also lacked the ability to produce the TCP fimbriae nor the extracellular matrix protein RbmA and could not metabolize trimetlylamine oxide (TMAO). Thus, these characteristics render them unlikely to be pandemic-inducing strains. However, a V. metschnikovii isolate encoding the complete T6SS system was isolated for the first time. These data provide new molecular insights into the diversity of V. cholerae and V. metschnikovii isolates recovered from migratory birds.
RESUMEN
Toxoplasma gondii, an intracellular zoonotic parasite, can infect humans and various animals worldwide. Wild rodents plan an important role as intermediate hosts of T. gondii. Some studies on T. gondii from wild rodents have been published, but the investigation data of T. gondii in wild rodents in China are limited. Therefore, brain tissue samples from 382 wild rodents in four provinces and one autonomous region of China were screened by PCR amplification of T. gondii B1 gene. Furthermore, the wild rodents were identified as five species based on their morphological characteristics, including Citellus dauricus (n = 35 from Heilongjiang), Lasiopodomys brandti (n = 81 from Inner Mongolia), Apodemus agrarius (n = 12 from Heilongjiang), Rattus norvegicus (n = 2 from Heilongjiang; n = 99 from Zhejiang; n = 54 from Shanxi), and Mus musculus (n = 99 from Guangxi). The overall prevalence of T. gondii in these wild rodents was 5.24% (20/382) in this study. At different regions, the highest prevalence of T. gondii was in Guangxi (12.12%) compared with other regions (0% in Heilongjiang; 2.47% in Inner Mongolia; 2.02% in Zhejiang; 7.41% in Shanxi). At different climates, the higher prevalence was found in temperate/mesothermal climates (7.07%) compared with continental/microthermal climates (3.26%). Also, the results showed that M. musculus had the highest prevalence of T. gondii infection (12.12%) among the rodent species sampled. Moreover, sampling year was significantly related to the prevalence of T. gondii in investigated wild rodents (p = 0.0117). This is the first report of T. gondii in wild rodents from Zhejiang, Guangxi, Shanxi, Heilongjiang provinces and Inner Mongolia autonomous region in China, providing the fundamental information for further prevention and control of toxoplasmosis in China.
Asunto(s)
Enfermedades de los Roedores , Toxoplasma , Toxoplasmosis Animal , Animales , China/epidemiología , Ratones , Prevalencia , Ratas , Factores de Riesgo , Enfermedades de los Roedores/epidemiología , Roedores , Toxoplasma/genética , Toxoplasmosis Animal/epidemiologíaRESUMEN
Toxoplasma gondii is one of protozoan parasites resulting in zoonosis, which can infect nearly all of warm-blooded hosts, including humans and raccoon dogs (Nyctereutes procyonoides). However, related reports on prevalence and genetic characterization of T. gondii strains in raccoon dogs were few in China. The aim of this study was to survey the prevalence and genetic characterization of T. gondii strains in domestic raccoon dogs from Jilin, Liaoning, and Hebei provinces, northern China. During April 2016 to November 2017, a total of 337 tissue samples collected from domestic raccoon dogs were detected with B1 gene using a nested PCR. And the positive samples were genotyped at 11 genetic markers (SAG1, 5'-and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2, and Apico) using multilocus PCR-restriction fragment length polymorphism technology. Sixteen out of 337 sika deer (4.75%) were positive with B1 gene by nest PCR. Furthermore, four positive DNA samples were completely typed through further being genotyped, in which three samples were identified as ToxoDB Genotype #9, and one sample was confirmed as ToxoDB Genotype #10. The results of molecular detection not only revealed the existence of T. gondii in domestic raccoon dogs in Jilin, Liaoning, and Hebei for the first time, but also provided the information of genetic diversity. This study also indicated that ToxoDB Genotype #9 as a kind of potential reservoir for T. gondii transmission, may be main genotype in domestic raccoon dogs in China, posing a risk of infection in human health.
Asunto(s)
Perros Mapache/parasitología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/parasitología , Animales , China/epidemiología , ADN Protozoario/genética , Genotipo , Prevalencia , Toxoplasma/genética , Toxoplasmosis Animal/epidemiologíaRESUMEN
Hepatitis E virus (HEV) infection is a serious public health concern in developing countries. China is regarded as an HEV-endemic area, but epidemiological data for HEV among different nationalities is limited. This study was conducted to estimate the seroprevalence and risk factors of HEV infection in Koreans (n = 520), Manchus (n = 303), Mongols (n = 217), and Hans (n = 802) in Eastern and Northeastern China between 2013 and 2015. A total of 366 (19.87%) out of 1842 samples were seropositive for IgG or IgM HEV-antibodies detected by enzyme-linked immunoassays. Among these groups, the Mongols had the highest seroprevalence of HEV infection (25.35%, 55/217), followed by the Koreans (23.65%, 123/520), the Manchus (19.80%, 60/303), and the Hans (15.96%, 128/802). Multiple analysis showed that the gender, consumption of raw/undercooked meat, source of drinking water, residence area, and age were significantly associated with HEV infection in four ethnic groups. The present results indicated that HEV infection was prevalent in Mongols, Koreans, Manchus, and Hans in the surveyed regions, which demonstrated the higher risk of transmitting HEV in multiple nationalities in Eastern and Northeastern China.