Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2410248, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235546

RESUMEN

Improving the efficiency of tin-based perovskite solar cells (TPSCs) is significantly hindered by energy level mismatch and weak interactions at the interface between the tin-based perovskite and fullerene-based electron transport layers (ETLs). In this study, four well-defined multidentate fullerene molecules with 3, 4, 5, and 6 diethylmalonate groups, labeled as FM3, FM4, FM5, and FM6 are synthesized, and employed as interfacial layers in TPSCs. It is observed that increasing the number of functional groups in these fullerenes leads to shallower lowest unoccupied molecular orbital (LUMO) energy levels and enhance interfacial chemical interactions. Notably, FM5 exhibits a suitable energy level and robust interaction with the perovskite, effectively enhancing electron extraction and defect passivation. Additionally, the unique molecular structure of FM5 allows the exposed carbon cage to be tightly stacked with the upper fullerene cage after interaction with the perovskite, facilitating efficient charge transfer and protecting the perovskite from moisture and oxygen damage. As a result, the FM5-based device achieves a champion efficiency of 15.05%, significantly surpassing that of the PCBM-based (11.77%), FM3-based (13.54%), FM4-based (14.34%), and FM6-based (13.75%) devices. Moreover, the FM5-based unencapsulated device exhibits excellent stability, maintaining over 90% of its initial efficiency even after 300 h of air exposure.

2.
J Hazard Mater ; 480: 135855, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303605

RESUMEN

Cyanobacterial toxins have raised global concerns due to potential chronic disease implications from daily drinking water exposure, which remain largely unknown despite extensive research on their acute effects. To understand the mechanisms underlying microcystin-LR (MC-LR)-induced inflammation-associated diseases. Mice were exposed to MC-LR for one year at concentrations comparable to human environmental exposure levels. Comprehensive pathological observation and multi-omics approaches based on 16S rRNA gene sequencing, untargeted metabolomics, transcriptomics and proteomics were conducted across various organs. Daily exposure to MC-LR induced intestinal microbial dysbiosis and colitis-like changes. It also caused systemic chronic inflammation marked by elevated serum levels of inflammatory cytokines, inflammation-associated pathological changes, and identification of infection-related genes/proteins within the gut-brain-spleen-liver axis. Furthermore, multi-omics analysis across organs suggested that Muribaculaceae may promote a systemic infection-inflammatory response, relying on kynurenine metabolites signaling in peripheral tissues. In contrast, Lachnospiraceae may act an opposing role, dependent on intestinal indole derivatives via the neuroimmunomodulation pathway. A fecal microbiota transplantation experiment confirmed that alterations in Muribaculaceae and Lachnospiraceae resulting from exposure to MC-LR triggered the local and systemic chronic inflammation in mice. This study light on the potential strategies employed by gut microbial community in regulating MC-induced inflammation-associated chronic diseases under repeated exposure through drinking water.

3.
G3 (Bethesda) ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290157

RESUMEN

The sugarcane aphid, Melanaphis sacchari (Zehntner, 1897), is an agricultural pest that causes damage to plants in the Poaceae (the grasses) family, such as sorghum and sugarcane. Here, we used Nanopore long reads and Hi-C interaction map to generate a chromosome-level assembly with a total length of 356.1 Mb, of which 85.5% (304.6 Mb) is contained within the three autosomes and the X chromosome. Repetitive sequences accounted for 16.29% of the chromosomes and a total of 12,530 protein-coding genes were annotated, achieving 95.8% benchmarking universal single-copy orthologs (BUSCO) gene completeness. This offers a substantial improvement compared to previous low-quality genomic resources. Phylogenomic analysis by comparing M. sacchari with twenty-four published aphid genomes representing three aphid tribes reveals that M. sacchari belongs to the tribe Aphidini and maintained a conserved chromosome structure with other Aphidini species. The high-quality genomic resources reported in this study will be useful for understanding the evolution of aphid genomes and studying pest management of M. sacchari.

4.
Angew Chem Int Ed Engl ; : e202411659, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150899

RESUMEN

Designing an efficient modification molecule to mitigate non-radiative recombination at the NiOx/perovskite interface and improve perovskite quality represents a challenging yet crucial endeavor for achieving high-performance inverted perovskite solar cells (PSCs). Herein, we synthesized a novel fullerene-based hole transport molecule, designated as FHTM, by integrating C60 with 12 carbazole-based moieties, and applied it as a modification molecule at the NiOx/perovskite interface. The in-situ self-doping effect, triggered by electron transfer between carbazole-based moiety and C60 within the FHTM molecule, along with the extended π conjugated moiety of carbazole groups, significantly enhances FHTM's hole mobility. Coupled with optimized energy level alignment and enhanced interface interactions, the FHTM significantly enhances hole extraction and transport in corresponding devices. Additionally, the introduced FHTM efficiently promotes homogeneous nucleation of perovskite, resulting in high-quality perovskite films. These combined improvements led to the FHTM-based PSCs yielding a champion efficiency of 25.58% (Certified: 25.04%), notably surpassing that of the control device (20.91%). Furthermore, the unencapsulated device maintained 93% of its initial efficiency after 1000 hours of maximum power point tracking under continuous one-sun illumination. This study highlights the potential of functionalized fullerenes as hole transport materials, opening up new avenues for their application in the field of PSCs.

5.
Adv Mater ; 36(35): e2404010, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935245

RESUMEN

The imperfect charge behavior at the interfaces of perovskite/electron-transport layer (ETL)/transparent conducting oxide (TCO) limits the further performance improvement of perovskite/silicon tandem solar cells. Herein, an indium tin oxide interlayer is deposited between ETL and TCO to address this issue. Specifically, the interlayer is prepared using an all-physical and H2O-free method, electron-beam evaporation, which can avoid any potential damage to the underlying perovskite and ETL layers. Moreover, the interlayer's composition can be readily tuned by changing the evaporator component, enabling authors to regulate the contact resistance and energy-level alignment of the ETL/TCO interface. Consequently, the resultant perovskite/silicon tandem solar cells exhibit an impressive power conversion efficiency (PCE) of 30.8% (certified 30.3%). Moreover, the device retains 98% of its initial PCE after continuous operation under ambient conditions for 1078 h, representing one of the most stable and efficient perovskite/silicon tandem solar cells.

6.
Angew Chem Int Ed Engl ; 63(20): e202402775, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38468414

RESUMEN

Tin-based perovskite solar cells (TPSCs) have received increasing attention due to their low toxicity, high theoretical efficiency, and potential applications as wearable devices. However, the inherent fast and uncontrollable crystallization process of tin-based perovskites results in high defect density in the film. Meanwhile, when fabricated into flexible devices, the prepared perovskite film exhibits inevitable brittleness and high Young's modulus, seriously weakening the mechanical stability. In this work, we design and synthesize a cross-linkable fullerene, thioctic acid functionalized C60 fulleropyrrolidinium iodide (FTAI), which has multiple interactions with perovskite components and can finely regulate the crystallization quality of perovskite film. The obtained perovskite film shows an increased grain size and a more matched energy level with the electron transport material, effectively improving the carrier extraction efficiency. The FTAI-based rigid device achieves a champion efficiency of 14.91 % with enhanced stability. More importantly, the FTAI located at the perovskite grain boundaries could spontaneously cross-link during the perovskite annealing process, which effectively improves the conductivity and elasticity of grain boundaries, thereby giving the film excellent bending resistance. Finally, the FTAI-based wearable device yields a record efficiency of 12.35 % and displays robust bending durability, retaining about 90 % of the initial efficiency after 10,000 bending times.

7.
Adv Mater ; 36(21): e2311923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400811

RESUMEN

Light-induced phase segregation is one of the main issues restricting the efficiency and stability of wide-bandgap perovskite solar cells (WBG PSCs). Small organic molecules with abundant functional groups can passivate various defects, and therefore suppress the ionic migration channels for phase segregation. Herein, a series of pyridine-derivative isomers containing amino and carboxyl are applied to modify the perovskite surface. The amino, carboxyl, and N-terminal of pyridine in all of these molecules can interact with undercoordinated Pb2+ through coordination bonds and suppress halide ions migration via hydrogen bonding. Among them, the 5-amino-3-pyridine carboxyl acid (APA-3) treated devices win the champion performance, enabling an efficiency of 22.35% (certified 22.17%) using the 1.68 eV perovskite, which represents one of the highest values for WBG-PSCs. This is believed to be due to the more symmetric spatial distribution of the three functional groups of APA-3, which provides a better passivation effect independent of the molecular arrangement orientation. Therefore, the APA-3 passivated perovskite shows the slightest halide segregation, the lowest defect density, and the least nonradiative recombination. Moreover, the APA-3 passivated device retains 90% of the initial efficiency after 985 h of operation at the maximum power point, representing the robust durability of WBG-PSCs under working conditions.

8.
Environ Res ; 241: 117597, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939808

RESUMEN

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Asunto(s)
Agua Potable , Microcystis , Lagos/química , Microcistinas , ARN Ribosómico 16S/genética , Microcystis/genética , Fósforo/análisis , China
9.
J Am Chem Soc ; 146(4): 2494-2502, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38129761

RESUMEN

Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.

10.
Water Res ; 245: 120575, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37688853

RESUMEN

Aquatic plants are potentially impacted by microcystins (MCs) in lakes experiencing harmful algal blooms. However, how these plants respond, and possibly adapt to osmotic stress caused by MCs is unclear. Vallisneria natans is a pioneer taxon with a global distribution in eutrophic lakes. In this study, we investigated the effect of MC-LR on morphological structure, water retention, osmoregulatory ability, and homeostasis of calcium (Ca2+) and potassium (K+) ions in V. natans leaves. Results showed that the morphological changes caused by MC-LR included increased volumes of epidermal and mesophyll cells, changes in their lignification level, and the degradation of chloroplast structure and dissolution of starch granules. The increased moisture content and water potential with MC-LR concentration were consistent with the occurrence of osmotic stress, and the decreased osmotic potential implied the activation of osmoregulation. Soluble sugar and free amino acid concentrations increased at MC-LR treatments ≥10 µg/L, while inorganic ion K+ content increased in all MC-LR treatments. Although instantaneous K+inflow and Ca2+outflow occurred at 10 µg/L and 100 µg/L MC-LR, respectively, ≥1 µg/L MC-LR resulted in continuous K+ inflow and Ca2+ outflow within 24 h. Moreover, plasma membrane hyperpolarization was caused by MC-LR, especially at 1 and 10 µg/L. We suggest that Ca2+ efflux served as a signal molecule from the cytoplasmic matrix via Ca2+-ATPase, and the uptake of K+ was activated passively through transporters in response to MC-LR-induced plasma membrane hyperpolarization. Therefore, the uptake of K+ was a part of the response but not an adaptation to MC-LR stress, and is considered the cause for the uptake of water in leaves. Ca2+ and K+ homeostasis of V. natans leaves was disrupted by MC-LR concentrations as low as 1 µg/L, suggesting that aquatic plants in most eutrophic lakes may experience negative impacts such as Ca2+ loss, impacts to cell water balance, and alteration in cellular morphology, due to osmotic stress caused by MC-LR.

11.
Environ Sci Pollut Res Int ; 30(47): 104554-104562, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704817

RESUMEN

The use of cyanobacteria-polluted water for irrigation has become an increasing concern due to the potential contamination of microcystins (MCs). However, the effects of MCs on plant performance and food safety under different irrigation methods are not well understood. In this study, we investigated the effects of microcystin-LR (MC-LR) on the growth, food quality, and safety of lettuce and carrot using four irrigation methods (spray irrigation and three types of drip irrigation with different distances from the plant stem). Our results showed that exposure to 10 µg L-1 MC-LR negatively affected plant growth and food quality in treatments with spray irrigation (TS) and drip irrigation directly to the stem (TD0), but not in treatments with drip irrigation away from the plant stem (TD10 and TD20). Using soil as a filtration system, the bioavailability of MC-LR in soil was reduced in TD10 and TD20, resulting in less bioaccumulation in plant edible tissues. The estimated daily intake (EDI) values of TS and TD0 in both lettuce and carrot cultivation exceeded the tolerable daily intake (TDI) limit proposed by WHO, whereas the EDI values of TD10 and TD20 could be effectively reduced below the TDI limit. This study highlights the importance of drip irrigation away from the plant stem as a practical measure to mitigate the effects of cyanobacteria-polluted water in agricultural production.


Asunto(s)
Cianobacterias , Daucus carota , Lactuca , Microcistinas/metabolismo , Disponibilidad Biológica , Cianobacterias/metabolismo , Suelo , Agua
12.
Water Res ; 245: 120648, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37738941

RESUMEN

Cyanobacterial blooms release a large number of algal toxins (e.g., Microcystins, MCs) and seriously threaten the safety of drinking water sources what the SDG 6.1 pursues (to provide universal access to safe drinking water by 2030, United Nations Sustainable Development Goal). Nevertheless, algal toxins in lake water have not been routinely monitored and evaluated well and frequently so far. In this study, a total of 100 large lakes (>25 km2) in densely populated eastern China were studied, and a remote sensing scheme of human health risks from MCs based on Sentinel-3 OLCI data was developed. The spatial and temporal dynamics of MCs risk in eastern China lakes since OLCI satellite observation data (2016-2021) were first mapped. The results showed that most of the large lakes in eastern China (80 out of 100) were detected with the occurrence of a high risk of more than 1 pixel (300×300 m) at least once. Fortunately, in terms of lake areas, the frequency of high human health risks in most waters (70.93% of total lake areas) was as less as 1%. This indicates that drinking water intakes can be set in most waters from the perspective of MCs, yet the management departments are required to reduce cyanobacterial blooms. This study highlights the potential of satellite in monitoring and assessing the risk of algal toxins and ensuring drinking water safety. It is also an important reference for SDG 6.1 reporting for lakes that lack routine monitoring.


Asunto(s)
Cianobacterias , Agua Potable , Humanos , Microcistinas/análisis , Desarrollo Sostenible , Lagos/microbiología , Medición de Riesgo , China , Monitoreo del Ambiente
13.
Adv Mater ; 35(39): e2301624, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358373

RESUMEN

Perovskite solar cells (PSCs) have demonstrated over 25% power conversion efficiency (PCE) via efficient surface passivation. Unfortunately, state-of-the-art perovskite post-treatment strategies can solely heal the top interface defects. Herein, an ion-diffusion management strategy is proposed to concurrently modulate the top interfaces, buried interfaces, and bulk interfaces (i.e., grain boundaries) of perovskite film, enabling all-interface defect passivation. Specifically, this method is enabled by applying double interactive salts of octylammonium iodide (OAI) and guanidinium chloride (GACl) onto the 3D perovskite surface. It is revealed that the hydrogen-bonding interaction between OA+ and GA+ decelerates the OA+ diffusion and therefore forms a dimensionally broadened 2D capping layer. Additionally, the diffusion of GA+ and Cl- determines the composition of the bulk and buried interface of PSCs. As a result, n-inter-i-inter-p, i.e., five-layer structured PSCs can be obtained with a champion PCE of 25.43% (certified 24.4%). This approach also enables the substantially improved operational stability of perovskite solar cells.

14.
Nat Commun ; 14(1): 3738, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349332

RESUMEN

Constructing 2D/3D perovskite heterojunctions is effective for the surface passivation of perovskite solar cells (PSCs). However, previous reports that studying perovskite post-treatment only physically deposits 2D perovskite on the 3D perovskite, and the bulk 3D perovskite remains defective. Herein, we propose Cl2-dissolved chloroform as a multifunctional solvent for concurrently constructing 2D/3D perovskite heterojunction and inducing the secondary growth of the bulk grains. The mechanism of how Cl2 affects the performance of PSCs is clarified. Specifically, the dissolved Cl2 reacts with the 3D perovskite, leading to Cl/I ionic exchange and Ostwald ripening of the bulk grains. The generated Cl- further diffuses to passivate the bulk crystal and buried interface of PSCs. Hexylammonium bromide dissolved in the solvent reacts with the residual PbI2 to form 2D/3D heterojunctions on the surface. As a result, we achieved high-performance PSCs with a champion efficiency of 24.21% and substantially improved thermal, ambient, and operational stability.


Asunto(s)
Compuestos de Calcio , Óxidos , Oxidación-Reducción , Solventes
15.
Nanomicro Lett ; 15(1): 111, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121964

RESUMEN

Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (VOC) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)2PbCl4 (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent. First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase. The (PMA)2PbCl4 forms improved type-I energy level alignment with the WBG perovskite, reducing the electron recombination at the perovskite/hole-transport-layer interface. Applying this strategy in fabricating semi-transparent WBG perovskite solar cells (indium tin oxide as the back electrode), the VOC deficits can be reduced to 0.49 V, comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes. Consequently, we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high VOC of 1.23 V.

16.
Environ Pollut ; 321: 121146, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706860

RESUMEN

The presence of microplastics (MPs) in eutrophic waters (both freshwaters and coastal waters) is increasingly reported globally, as has the occurrence of cyanotoxins, including microcystins (MCs). MPs have the potential to act as vectors for MCs in freshwater environments, but the transportation mechanisms and associated risks remain poorly understood. In this study, we investigated how aging process and water conditions influenced the adsorption behavior of the microcystin-leucine-arginine (MC-LR) onto polyethylene (PE) and polypropylene (PP). Adsorption kinetics and isotherms showed that the MC-LR sorption capacity in descending order was aged PP > pristine PP > aged PE > pristine PE. The aging process increased the MC-LR sorption amount by 25.1% and 6.5% for PP and PE, respectively. The increase in sorption affinity of aged MPs may be attributed to the significant surface oxidation and the formation of the hydrogen bonding between MPs and MC-LR. Furthermore, MC-LR sorption can be largely influenced by the aqueous conditions. MC-LR preferred to be much adsorbed onto different MPs in brackish water than in freshwater owing to the cation bridging effect and complexation of high levels of cations. The usual alkalescent pH in eutrophic waters did not favor MC-LR sorption to MPs. Finally, based on the desorption results, assuming a worst-case scenario, MC-LR bound on MPs may have a high risk to daphnids. The findings obtained in this study have improved our knowledge in the interaction of MPs with hydrophilic cyanotoxins in aqueous ecosystems, as well as the risks associated with their coexistence.


Asunto(s)
Microcistinas , Contaminantes Químicos del Agua , Animales , Microcistinas/análisis , Microplásticos , Adsorción , Plásticos , Zooplancton , Ecosistema , Agua , Toxinas de Cianobacterias , Contaminantes Químicos del Agua/análisis
17.
J Environ Manage ; 326(Pt B): 116833, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435125

RESUMEN

Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 µg/L, 1.48 µg/L, and 0.15 µg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.


Asunto(s)
Lagos , Microcistinas , Agua , Ecosistema , Monitoreo del Ambiente , Polvo , China
18.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522044

RESUMEN

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Asunto(s)
Monitoreo del Ambiente , Microcistinas , Microcistinas/análisis , Fósforo/análisis , Nitrógeno/análisis , Medición de Riesgo , Fosfatos/análisis , Agua/análisis , China
19.
Adv Mater ; 35(9): e2205603, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562082

RESUMEN

Tin-based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco-friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well-defined regioisomers (trans-2, trans-3, trans-4, and e) of diethylmalonate-C60 bisadduct (DCBA) are isolated and well characterized. The well-defined molecular structure enables us to investigate the real structure-dependent effects on photovoltaic performance. It is found that the chemical structures of the regioisomers not only affect their energy levels, but also lead to significant differences in their molecular packings and interfacial contacts. As a result, the devices with trans-2, trans-3, trans-4, and e as ETLs yield efficiencies of 11.69%, 14.58%, 12.59%, and 10.55%, respectively, which are higher than that of the as-prepared DCBA-based (10.28%) device. Notably, the trans-3-based device also demonstrates a certified efficiency of 14.30%, representing one of the best-performing TPSCs.

20.
Aquat Toxicol ; 254: 106377, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36563584

RESUMEN

Aquatic plants play an important role in maintaining lake water status and ecosystem stability, but the effect of the cyanotoxin microcystin (MC) on ion homeostasis in aquatic plants and the resulting adverse consequences remains unclear. This study used non-invasive micro-test technology to detect the effect of MC-LR on homeostasis of calcium (Ca2+) and hydrogen ions (H+) in Vallisneria natans (Lour.) Hara, and examined the relationship between ion homeostasis and physiological indicators. Results showed that 1) MC-LR was enriched in V. natans tissues, with greater absorption in roots than in leaves, and 2) MC-LR induced a sustained and dose-dependent Ca2+ efflux from leaves and recoverable Ca2+ efflux from roots. Although H+-ATPase of leaves and roots was activated by MC-LR, the effluent of H+ from roots and influent of H+ into leaves was enhanced. By affecting the homeostasis of Ca2+ and H+, MC-LR directly or indirectly affected accumulation of nutrients essential for maintaining normal growth: accumulation of nitrogen, magnesium, phosphorus, calcium, iron, and zinc decreased in leaves; calcium, magnesium, and zinc decreased in roots; and potassium showed an increase in both leaves and roots. Microscopy revealed MC-LR results in leaf swelling and reduced accumulation of protein and starch, presumably due to changes in nutrient processes. In addition, efflux of Ca2+ and reduced accumulation of transition metals resulted in decreased ROS levels in leaves and roots. The disruption of ionic homeostasis in aquatic plants can be caused by as small a concentration as 1 µg/L MC-LR, indicating potential ecological impacts caused by microcystin need greater attention.


Asunto(s)
Microcistinas , Contaminantes Químicos del Agua , Microcistinas/toxicidad , Calcio , Protones , Magnesio , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Zinc , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...