Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107690, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159807

RESUMEN

Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both Mitochondrial biogenesis and mitochondrial function are iron dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g. Tfr1, Hfe) are involved in cold induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-) deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and ATGL, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction (SVF) from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or SVFs from WT mice supplemented with iron citrate (FAC) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.

2.
Nat Protoc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019974

RESUMEN

With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ .

3.
Schizophr Res ; 270: 325-338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964078

RESUMEN

Emerging evidence indicates that gut microbial dysbiosis is associated with the development of antipsychotic-induced weight gain in schizophrenia (SZ). However, the exact taxonomic composition and functionality that constitute the "obesogenic" microbial profile remain elusive. Our retrospective survey identified two groups of the SZ population separated by BMI, with 1/3 of patients developing overweight/obesity after chronic antipsychotic treatment. Based on multi-omics analysis, we observed altered gut microbiota in SZ patients with overweight/obesity, characterized by a reduction in several beneficial bacteria genera, including Bacteroides, Parabacteroides, Akkermansia, and Clostridium. This microbial dysbiosis was accompanied by disrupted energy expenditure and nutritional metabolism, worsened metabolic indices, and reduced levels of beneficial metabolites, e.g. indole-3-carboxylic acid and propionic acid. Moreover, leveraging data from first-episode drug-naïve schizophrenia (FSZ) patients at one-month and one-year follow-up, both artificial neural network and random forest classifier-based prediction models demonstrated a strong ability of microbial profiles to predict antipsychotic-induced weight gain. Importantly, FSZ patients with higher relative abundance of Parabacteria distasonis were less susceptible to antipsychotic-induced weight gain. Thus, gut microbiota could serve as a noninvasive approach to predict antipsychotic-induced weight gain, guiding clinical antipsychotics administration and developing novel therapeutic strategies for weight management in SZ.


Asunto(s)
Antipsicóticos , Disbiosis , Microbioma Gastrointestinal , Esquizofrenia , Aumento de Peso , Humanos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Antipsicóticos/efectos adversos , Antipsicóticos/farmacología , Adulto , Masculino , Femenino , Aumento de Peso/efectos de los fármacos , Disbiosis/inducido químicamente , Disbiosis/microbiología , Estudios Retrospectivos , Obesidad/inducido químicamente , Obesidad/microbiología , Adulto Joven , Persona de Mediana Edad , Sobrepeso/inducido químicamente , Sobrepeso/microbiología , Multiómica
4.
Transl Cancer Res ; 13(4): 2064-2072, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737686

RESUMEN

Background: Tracheobronchopathia osteochondroplastica (TPO) is a rare, benign, chronic disorder of unknown etiology. It is characterized by submucosal nodules, often calcified, which predominantly affect the anterolateral aspects of the trachea and main bronchi, while sparing the posterior bronchial wall. The co-occurrence of TPO and lung cancer is exceedingly rare. This report presents a case of TPO association with early-stage lung cancer, which was managed through surgical intervention. No active treatment was undertaken for the TPO. Case Description: A patient presented with a nodule in the right upper lobe, which was identified during a computed tomography (CT) scan of the chest, suggestive of early-stage lung cancer. Concurrently, multiple calcifications in the cartilaginous rings of the trachea were noted. Bronchoscopy revealed distinctive "pebblestone" nodules along the anterior and lateral tracheal walls, indicative of extensive TPO. The patient underwent bronchofiberscopy, which showed patency in the bronchial lumen of the right lung's upper lobe. A biopsy was not undertaken during this procedure. Comprehensive preoperative tests, including a blood biochemical examination, tumor-marker tests, lung-function tests, head-enhanced magnetic resonance imaging, abdominal ultrasound, and whole-body bone emission CT revealed no significant abnormalities. Despite this, the patient declined a whole-body positron emission tomography (PET)-CT scan. Given the potential malignancy of nodules in the right lung's upper lobe, the lobectomy for lung cancer was carried out, a procedure that would have proceeded irrespective of the presence or absence of TPO. Preoperative planning for potential tracheal intubation difficulties involved consultation with the anesthesiologist, resulting in a smooth intraoperative process. The pathology confirmed invasive adenocarcinoma. Post-surgery, the patient developed an infection in the right lung's lower lobe, identified as pseudomonas aeruginosa and Klebsiella pneumoniae through sputum culture and bronchoscopic lavage. Treatment with meropenem for 2 weeks, as guided by drug sensitivity results and respiratory advice, led to an improvement, allowing for discharge. A follow-up lung CT four months post-operation showed inflammation absorption in the right lower lobe. Conclusions: Surgical resection in cases of TPO association with lung cancer may have an increased risk of postoperative pulmonary infection. Proactive intraoperative sputum aspiration by anesthesiologists and the postoperative reinforcement of anti-infection measures, guided by drug sensitivity results, are recommended.

5.
Br J Cancer ; 130(12): 1904-1915, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693428

RESUMEN

BACKGROUND/OBJECTIVES: Hypoxia-inducible factor (HIF)-3α1's role in colorectal cancer (CRC) cells, especially its effects on epithelial-mesenchymal transition (EMT), zinc finger E-box binding homeobox 2 (ZEB2) gene expression, and iron metabolism, remains largely unstudied. This research sought to elucidate these relationships. METHODS: RNA-seq was conducted to investigate the impact of HIF-3α1 overexpression in CRC cells. Dual-luciferase reporter assays assessed the direct targeting of ZEB2 by HIF-3α1. Scratch assays measured changes in cell migration following HIF-3α1 overexpression and ZEB2 knockdown. The effects of HIF-3α1 overexpression on colon tumour growth and liver metastasis were examined in vivo. Iron chelation was used to explore the role of iron metabolism in HIF-3α1-mediated EMT and tumour growth. RESULTS: HIF-3α1 overexpression induced EMT and upregulated ZEB2 expression, enhancing cancer cell migration. ZEB2 knockdown reduced mesenchymal markers and cell migration. HIF-3α1 promoted colon tumour growth and liver metastasis, increased transferrin receptor (TFRC) expression and cellular iron levels, and downregulated HIF-1α, HIF-2α, and NDRG1. Iron chelation mitigated HIF-3α1-mediated EMT, tumour growth, and survival. CONCLUSIONS: HIF-3α1 plays a critical role in colon cancer progression by promoting EMT, iron accumulation, and metastasis through ZEB2 and TFRC regulation, suggesting potential therapeutic targets in CRC.


Asunto(s)
Movimiento Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Hierro , Neoplasias Hepáticas , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Hierro/metabolismo , Ratones , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Desnudos , Proteínas Represoras , Proteínas Reguladoras de la Apoptosis
6.
Nat Sci Sleep ; 16: 517-530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812701

RESUMEN

Background: Obstructive sleep apnea (OSA) is a prevalent sleep breathing disorder characterized by intermittent hypoxia (IH), with continuous positive airway pressure (CPAP) as its standard treatment. However, the effects of intermittent hypoxia/reoxygenation (IH/R) on weight regulation in obesity and its underlying mechanism remain unclear. Gut microbiota has gained attention for its strong association with various diseases. This study aims to explore the combined influence of IH and obesity on gut microbiota and to investigate the impact of reoxygenation on IH-induced alterations. Methods: Diet-induced obese (DIO) rats were created by 8-week high-fat diet (HFD) feeding and randomly assigned into three groups (n=15 per group): normoxia (NM), IH (6% O2, 30 cycles/h, 8 h/day, 4 weeks), or hypoxia/reoxygenation (HR, 2-week IH followed by 2-week reoxygenation) management. After modeling and exposure, body weight and biochemical indicators were measured, and fecal samples were collected for 16S rRNA sequencing. Results: DIO rats in the IH group showed increased weight gain (p=0.0016) and elevated systemic inflammation, including IL-6 (p=0.0070) and leptin (p=0.0004). Moreover, IH rats exhibited greater microbial diversity (p<0.0167), and significant alterations in the microbial structure (p=0.014), notably the order Clostridiales, accompanied by an upregulation of bile acid metabolism predicted pathway (p=0.0043). Reoxygenation not only improved IH-exacerbated obesity, systemic inflammation, leptin resistance, and sympathetic activation, but also showed the potential to restore IH-induced microbial alterations. Elevated leptin levels were associated with Ruminococcaceae (p=0.0008) and Clostridiales (p=0.0019), while body weight was linked to Blautia producta (p=0.0377). Additionally, the abundance of Lactobacillus was negatively correlated with leptin levels (p=0.0006) and weight (p=0.0339). Conclusion: IH leads to gut dysbiosis and metabolic disorders, while reoxygenation therapy demonstrates a potentially protective effect by restoring gut homeostasis and mitigating inflammation. It highlights the potential benefits of CPAP in reducing metabolic risk among obese patients with OSA.

7.
Gut Microbes ; 16(1): 2347722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706205

RESUMEN

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Ratones Endogámicos C57BL , Probióticos , Receptores de Hidrocarburo de Aril , Vía de Señalización Wnt , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Humanos , Probióticos/administración & dosificación , Probióticos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/metabolismo , Indoles/farmacología , Protectores contra Radiación/farmacología , Organoides/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/prevención & control , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de la radiación , Intestinos/microbiología , Intestinos/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
Int J Radiat Oncol Biol Phys ; 120(1): 189-204, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485099

RESUMEN

PURPOSE: Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS: Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS: The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS: The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Mucosa Intestinal , Ratones Endogámicos C57BL , Probióticos , Animales , Probióticos/farmacología , Probióticos/uso terapéutico , Masculino , Ratones , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Microbioma Gastrointestinal/efectos de los fármacos , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/patología , Proliferación Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Intestinos/microbiología , Diferenciación Celular/efectos de los fármacos , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/metabolismo , Células Madre , Citocinas/metabolismo
9.
Cell Signal ; 117: 111097, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38355078

RESUMEN

Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Regeneración , Ondas Ultrasónicas , Proteínas Quinasas Activadas por AMP/metabolismo , Diferenciación Celular , Proliferación Celular , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Ratones , Células Cultivadas
10.
Int Immunopharmacol ; 129: 111637, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38335653

RESUMEN

The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.


Asunto(s)
Cumarinas , Intestinos , Ratones , Humanos , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Antioxidantes , Radiación Ionizante
11.
Sci China Life Sci ; 67(4): 745-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157106

RESUMEN

The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.


Asunto(s)
Butiratos , Disbiosis , Ratones , Animales , ARN Ribosómico 16S/genética , Envejecimiento , Homeostasis
12.
Imeta ; 2(2): e90, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38868421

RESUMEN

In this longitudinal cohort study, our results demonstrated that there are rhythmic changes in gut microbial network signatures in early life, and healthy infants adopt more complex and stable network structure in their gut microbiota than that of the infants with eczema.

13.
Imeta ; 2(2): e99, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38868440

RESUMEN

Schizophrenia (SZ) places a tremendous burden on public health as one of the leading causes of disability and death. SZ patients are more prone to developing obesity than the general population from the clinical practice. The development of obesity frequently causes poor psychiatric outcomes in SZ patients. In turn, maternal obesity during pregnancy has been associated with an increased risk of SZ in offspring, suggesting that these two disorders may have shared neuropathological mechanisms. The gut microbiota is well known to serve as a major regulator of bidirectional interactions between the central nervous system and the gastrointestinal tract. It also plays a critical role in maintaining physical and mental health in humans. Recent studies have shown that the dysbiosis of gut microbiota is intimately associated with the onset of SZ and obesity through shared pathophysiological mechanisms, particularly the stimulation of immune inflammation. Therefore, gut microbiota may serve as a common biological basis for the etiology in both SZ and obesity, and the perturbed gut-brain axis may therefore account for the high prevalence of obesity in patients with SZ. On the basis of these findings, this review provides updated perspectives and intervention approaches on the etiology, prevention, and management of obesity in SZ patients by summarizing the recent findings on the role of gut microbiota in the pathogenesis of SZ and obesity, highlighting the role of gut-derived inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...