Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001056

RESUMEN

In the process of metal wire and additive manufacturing, due to changes in temperature, humidity, current, voltage, and other parameters, as well as the failure of machinery and equipment, a failure may occur in the manufacturing process that seriously affects the current situation of production efficiency and product quality. Based on the demand for monitoring of the key impact parameters of additive manufacturing, this paper develops a parameter monitoring and prediction system for the additive manufacturing feeding process to provide a basis for future fault diagnosis. The fault diagnosis and prediction system for metal wire supply and additive manufacturing utilizes STM 32 as its core, enabling the capture and transmission of temperature, humidity, current, and voltage data. The upper computer system, designed on the LabVIEW 2019 virtual instrument platform, incorporates an LSTM neural network model and facilitates a connection between LabVIEW and MATLAB 2019 to achieve the prediction function. The monitoring and prediction system established in this study is intended to provide basic research assistance in the field of fault diagnosis.

2.
PeerJ ; 12: e17599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011378

RESUMEN

Two new Cortinarius species in subgenus Leprocybe, Cortinarius hengduanensis and C. yadingensis, are proposed based on a combination of morphological and molecular evidence. Cortinarius hengduanensis has distinct olive tinged basidiomata, a squamulose pileus, and small, subglobose to broadly ellipsoid basidiospores, the ITS sequence differs from that of C. flavifolium by at least 28 substitutions and independent positions. Cortinarius yadingensis has a squamulose pileus and subglobose to broadly ellipsoid coarsely verrucose basidiospores, the ITS sequence has at least 11 substitutions and index position deviations from the other members of the Leprocybe section. Both new species were found in mixed forests of southwest China.


Asunto(s)
Cortinarius , China , Cortinarius/genética , Cortinarius/clasificación , Cortinarius/aislamiento & purificación , ADN de Hongos/genética , Filogenia , Esporas Fúngicas
3.
Small ; : e2403971, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012083

RESUMEN

Developing low-cost and industrially viable electrode materials for efficient water-splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self-supported porous network Ni(OH)2-CeOx heterostructure layer on a FeOOH-modified Ni-mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two-electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe0.05/Fe@NM catalyst reaches a current density of 100 mA cm-2 at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe0.05/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm-2. Under real water splitting conditions, NiCe0.05/Fe@NM requires only 1.701 V to achieve 100 mA cm-2 with robust stability over 1000 h in an alkaline medium. The remarkable water-splitting performance and stability of the NiCe0.05/Fe@NM catalyst result from a synergistic combination of factors, including well-optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two-electrode electrodeposition method for the scalable production of self-supported electrocatalysts, paving the way for their practical application in industrial water-splitting processes.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38954799

RESUMEN

Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-ß (Aß) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aß. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aß fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38984582

RESUMEN

OBJECTIVE: Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS). METHODS: Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation. RESULTS: Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival. CONCLUSION: This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.

6.
J Dairy Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851581

RESUMEN

Hepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, non-ruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism. Due to the role of diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) in LD synthesis, we explored mechanisms of mitochondrial fatty acid transport in ketotic cows using liver biopsies and isolated primary hepatocytes. Compared with healthy cows, cows with fatty liver had massive accumulation of LD and high protein expression of the triglyceride (TAG) synthesis-related enzymes DGAT1 and DGAT2, LD synthesis-related proteins perilipin 2 (PLIN2) and perilipin 5 (PLIN5), and the mitochondrial fragmentation-related proteins dynamin-related protein 1 (DRP1) and fission 1 (FIS1). In contrast, factors associated with fatty acid oxidation, mitochondrial fusion and mitochondrial electron transport chain complex were lower compared with those in the healthy cows. In addition, transmission electron microscopy revealed significant contacts between LD-mitochondria in liver tissue from cows with fatty liver. Compared with isolated cytoplasmic mitochondria, expression of carnitine palmitoyl transferase 1A (CPT1A) and DRP1 was lower, but mitofusin 2 (MFN2) and mitochondrial electron transport chain complex was greater in isolated peridroplet mitochondria from hepatic tissue of cows with fatty liver. In vitro data indicated that exogenous free fatty acids (FFA) induced hepatocyte LD synthesis and mitochondrial dynamics consistent with in vivo results. Furthermore, DGAT2 inhibitor treatment attenuated the FFA-induced upregulation of PLIN2 and PLIN5 and rescued the impairment of mitochondrial dynamics. Inhibition of DGAT2 also restored mitochondrial membrane potential and reduced hepatocyte reactive oxygen species production. The present in vivo and in vitro results indicated there are functional differences among different types of mitochondria in the liver tissue of dairy cows with ketosis. Activity of DGAT2 may play a key role in maintaining liver mitochondrial function and lipid homeostasis in dairy cows during the transition period.

7.
Nat Commun ; 15(1): 4837, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844454

RESUMEN

The vertical settling of plastic debris in oceans is poorly understood. A large share of low-density microplastics (LDMPs) are largely absent from sea surfaces. The present study employs a model that considers the potential of an overlooked microbially induced calcium carbonate precipitation (MICP) process and new motion equations for irregular LDMPs. Here we show that the motion of LDMPs in the present model, exhibiting a damped oscillation pattern, is quite different from that in biofouling models. Furthermore, LDMPs in the size range of 10-200 µm are most likely to gain sufficient density at the biofouling/MICP stage to independently sink to the ocean floor with relatively small drag coefficients, potentially explaining the selective enrichment of LDMPs in the oceanic sediment. The size and shape exhibit strong non-linear effects on the settling patterns of LDMPs. Overall, the present study highlights the importance of calcite-mediated sinking of LDMPs in open oceans.

8.
Pharmgenomics Pers Med ; 17: 271-288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827182

RESUMEN

Introduction: Hepatocellular carcinoma (HCC) is one of the major types of liver cancer. Previous studies have shown that the centromere protein family is associated with malignant biological behaviors such as HCC proliferation. As a member of the centromere protein family, centromere protein Q (CENPQ) is closely associated with immunotherapy and immune cell infiltration in various tumors. However, the role and mechanism of CENPQ in HCC remain unclear. Methods: Multiple public databases and RT-qPCR were used to study the expression of CENPQ in HCC. Based on TCGA data, the correlation between CENPQ and clinicopathological characteristics and prognosis of HCC patients was analyzed, and its diagnostic value was evaluated. The potential biological functions of CENPQ in HCC were explored by functional enrichment analysis of differentially expressed genes. The distribution of tumor-infiltrating immune cell types was assessed using single-sample GSEA, and immune checkpoint gene expression was analyzed using Spearman correlation. Subsequently, loss-of-function experiments were performed to determine the function of CENPQ on the cell cycle and proliferation of HCC cells in vitro. Results: CENPQ was found highly expressed in HCC and correlated with weight, BMI, age, AFP, T stage, pathologic stage, histologic grade, and prothrombin time (all p < 0.05). ROC and Kaplan-Meier analyses indicated that CENPQ may be potentially used as a diagnostic marker for HCC (AUC = 0.881), and its upregulation is associated with decreased OS (p = 0.002), DSS (p < 0.001), and PFI (p = 0.002). Functional enrichment analysis revealed an association of CENPQ with biological processes such as immune cell infiltration, cell cycle, and hippo-merlin signaling deregulation in HCC. Furthermore, knockdown of CENPQ manifested in HCC cells with G0/1 phase cycle arrest and decreased proliferative capacity. Conclusion: CENPQ expression was higher in HCC tissues than in normal liver tissues. It was significantly associated with poor prognosis, immune cell infiltration, cell cycle, and proliferation. Therefore, CENPQ may become a promising prognostic biomarker for HCC patients.

9.
Insects ; 15(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921146

RESUMEN

Attelabidae insects have attracted much attention due to their unique leaf rolling behavior before oviposition. However, the lack of genomic data makes it difficult to understand the molecular mechanism behind their behavior and their evolutionary relationship with other species. To address this gap, we utilized Illumina and Nanopore sequencing platforms along with Hi-C technology to establish a highly accurate whole genome of A. dimidiatus at the chromosome level. The resulting genome size was determined to be 619.26 Mb, with a contig N50 of 50.89 Mb and GC content of 33.89%. Moreover, a total of 12,572 genes were identified, with 82.59% being functionally annotated, and 64.78% designated as repeat sequences. Our subsequent phylogenetic tree analysis revealed that Attelabidae's divergence from Curculionidae occurred approximately 161.52 million years ago. Furthermore, the genome of A. dimidiatus contained 334 expanded gene families and 1718 contracted gene families. In addition, using Phylogenetic Analysis by Maximum Likelihood (PAML), we identified 106 rapidly evolved genes exhibiting significant signals and 540 positively selected genes. Our research endeavors to serve as an invaluable genomic data resource for the study of Attelabidae, offering fresh perspectives for the exploration of its leaf rolling behavior.

10.
Front Public Health ; 12: 1363451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846605

RESUMEN

Background: Public health emergencies have a lasting impact on a country's economic and social development. However, commercial insurance can disperse these negative consequences and reduce risk losses. Method: Based on the Chinese Household Tracking Survey and Peking University Digital Inclusive Finance Index, this study employed a difference-in-differences model to test the impact of the COVID-19 outbreak on commercial insurance participation and the impact mechanism. Results: The analysis showed that the outbreak of COVID-19 improved residents' risk perception, risk preference and digital finance and promoted their participation in commercial insurance, commercial endowment insurance, and commercial medical insurance. Conclusion: Major public health emergencies can increase commercial insurance participation, but the promotional effect of commercial insurance on rural and low-income individuals is relatively limited. To tap into potential customers, financial institutions should focus on vulnerable societal groups. This study supplements the relevant literature on the impact of major public health emergencies on commercial insurance participation.


Asunto(s)
COVID-19 , Urgencias Médicas , Salud Pública , Humanos , China/epidemiología , COVID-19/epidemiología , COVID-19/economía , Masculino , Femenino , Adulto , Persona de Mediana Edad , Seguro de Salud/estadística & datos numéricos , Encuestas y Cuestionarios , SARS-CoV-2
11.
J Lipid Res ; 65(6): 100559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729351

RESUMEN

Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.


Asunto(s)
Esfingomielinas , Termogénesis , Proteína Desacopladora 1 , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Esfingomielinas/metabolismo , Ratones , Masculino , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Ratones Endogámicos C57BL
12.
Int J Ophthalmol ; 17(3): 596-602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721520

RESUMEN

AIM: To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty (SLAK) with corneal crosslinking (CXL) on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis (FS-LASIK). METHODS: A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo. The lenticules were collected from patients undertaking small incision lenticule extraction (SMILE) for the correction of myopia. Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength. RESULTS: All surgeries were conducted successfully with no significant complications. Their best corrected visual acuity (BCVA) ranged from 0.05 to 0.8-2 before surgery. The pre-operational total corneal thickness ranged from 345-404 µm and maximum keratometry (Kmax) ranged from 50.8 to 86.3. After the combination surgery, both the corneal keratometry (range 55.9 to 92.8) and total corneal thickness (range 413-482 µm) significantly increased. Four out of 5 patients had improvement of corneal biomechanical parameters (reflected by stiffness parameter A1 in Corvis ST). However, 3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze. Despite the onset of corneal edema right after SLAK, the corneal topography and thickness generally stabilized after 3mo. CONCLUSION: SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia. Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.

13.
Front Oncol ; 14: 1386772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737903

RESUMEN

Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.

14.
World J Psychiatry ; 14(5): 607-623, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38808079

RESUMEN

Depression, a prevalent and complex mental health condition, presents a significant global health burden. Depression is one of the most frequent mental disorders; deaths from it account for 14.3% of people worldwide. In recent years, the integration of complementary and alternative medicine, including traditional Chinese medicine (TCM), has gained attention as a potential avenue for addressing depression. This comprehensive review critically assesses the efficacy of TCM interventions in alleviating depressive symptoms. An in-depth look at different research studies, clinical trials, and meta-analyses is used in this review to look into how TCM practices like herbal formulations, acupuncture, and mind-body practices work. The review looks at the quality of the evidence, the rigor of the methods, and any possible flaws in the current studies. This gives us an idea of where TCM stands right now in terms of treating depression. This comprehensive review aims to assess the efficacy of TCM interventions in alleviating depressive symptoms. In order to learn more about their possible healing effects, the study also looks into how different types of TCM work, such as herbal formulas, acupuncture, and mind-body practices.

15.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786852

RESUMEN

In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in wastewater. The characterization of the TM-CN and the C-TM-CN was conducted via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FTIR) to ascertain the successful modification. The organic dye degradation experiments demonstrated that introducing an appropriate amount of Ti3C2 MXene resulted in the complete degradation of RhB within 60 min, three times the photocatalytic efficiency of a pure g-C3N4. The C-TM-CN exhibited the stable and outstanding photocatalytic degradation of the RhB solution over a wide range of pH values, indicating the characteristics of the photodegradation of organic pollutants in a wide range of aqueous environments. Furthermore, the results of the cyclic degradation experiments demonstrated that the C-TM-CN composite film maintained a degradation efficiency of over 85% after five cycles, thereby confirming a notable improvement in its cyclic stability. Consequently, the C-TM-CN composite film exhibits excellent photocatalytic performance and is readily recyclable, making it an auspicious eco-friendly material in water environment remediation.

16.
Indian J Ophthalmol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736244

RESUMEN

PURPOSE: The gut microbiota might be closely related to central retinal artery occlusion (CRAO), but the causality has not been well defined. Two-sample Mendelian randomization (MR) study was used to reveal the potential causal effect between the gut microbiota and CRAO. METHODS: Data for gut microbiota were obtained from the genome-wide association studies of the Dutch Microbiome Project (DMP) (n = 7738) and the MiBioGen consortium (n = 18,340), and data on CRAO were obtained from samples of FinnGen project (546 cases and 344,569 controls). Causalities of exposures and outcomes were explored mainly using the inverse variance weighted method. In addition, multiple sensitivity analyses including MR-Egger, weighted median (WM), simple mode, weighted mode, and MR Pleiotropy RESidual Sum and Outlier were simultaneously applied to validate the final results. RESULTS: We identified three microbial pathways (two risk factors/one protective factor) and seven microbial taxa (two risk factors/five protective factors) associated with CRAO in the DMP study. Based on the data from the MiBioGen consortium, we identified seven microbial taxa (two risk factors/five protective factors) associated with CRAO, including the Eubacterium genus, which was consistently identified as a risk factor in both the DMP and the MiBioGen consortium MR analyses. CONCLUSION: Our study implicates the potential causal effects of specific microbial taxa and pathways on CRAO, potentially providing new insights into the prevention and treatment of CRAO through specific gut microbial taxa and pathway. Since our conclusion is a hypothesis derived from secondary genome-wide association studies (GWAS) data analysis, further research is needed for confirmation.

17.
Sci Total Environ ; 931: 172978, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705295

RESUMEN

Bisphenol analogues (BPs) are commonly found in riverine and coastal waters. However, the lack of a reliable and robust passive sampling method has hindered our ability to monitor these compounds in aquatic systems. The study developed a novel organic-diffusive gradients in thin film (o-DGT) sampler based on stainless steel mesh membrane, polyacrylamide diffusive gel, and hydrophilic-lipophilic balance (HLB) binding gel. This innovative design tackled issues of filter membrane sorption in traditional o-DGT devices and potential gel damage in membrane-less o-DGT devices, showing promising application prospects. The mass accumulation of 15 target BPs was linear over 10 days in both freshwater (r2 ≥ 0.92) and seawater (r2 ≥ 0.94), with no saturation observed. The diffusion coefficients (D) through polyacrylamide diffusive gels ranged from 4.04 × 10-6 to 5.77 × 10-6 cm2 s-1 in freshwater and from 1.74 × 10-6 to 4.69 × 10-6 cm2 s-1 in seawater for the target BPs (except for bisphenol PH) at 22 °C. The D values of the target BPs in seawater were lower than those in freshwater due to the high salinity in seawater (35 ‰). The o-DGT samplers demonstrated good integrity in field applications. The total concentrations of the eight detected BPs ranged from 9.2 to 323 ng L-1, which was consistent with the measurements obtained by grab sampling. Among all BPs, bisphenol S, bisphenol F, and bisphenol A were consistently detected at all sites using both sampling methods. The concentrations of some novel BPs in coastal water measured by grab sampling were comparable to those measured in rivers, suggesting the need to strengthen pollution control of BPs in coastal areas. These results indicate that the o-DGT passive sampling method developed in the present study can be effectively used for monitoring BPs in freshwater and coastal environments.

18.
Chemosphere ; 358: 142277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719118

RESUMEN

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Asunto(s)
Antivirales , Cobalto , Nanotubos de Carbono , Nitrógeno , Ácido Peracético , Nanotubos de Carbono/química , Nitrógeno/química , Cobalto/química , Ácido Peracético/química , Catálisis , Antivirales/química , Contaminantes Químicos del Agua/química , Aciclovir/química , Adsorción
19.
Environ Int ; 187: 108719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718677

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Asunto(s)
Barrera Hematoencefálica , Fluorocarburos , Humanos , Barrera Hematoencefálica/metabolismo , Proyectos Piloto , Fluorocarburos/sangre , Persona de Mediana Edad , Femenino , Adulto , Masculino , Glioma , Anciano , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales , Ácidos Alcanesulfónicos/sangre , Encéfalo/metabolismo
20.
Phytomedicine ; 129: 155597, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643713

RESUMEN

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Factor 2 Relacionado con NF-E2 , Sepsis , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Ferroptosis/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Cardiopatías/etiología , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Farmacología en Red , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...