Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
J Agric Food Chem ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084686

RESUMEN

Intestinal stem cells (ISCs) are necessary to maintain intestinal renewal. Here, we found that the highland barley ß-glucan (HBG) alleviated pathological symptoms and promoted the proliferation of intestinal stem cells in colitis mice. Notably, metabolomics studies showed that docosahexaenoic acid (DHA) was significantly increased by the HBG treatment. DHA is a ligand for peroxisome proliferator-activated receptor α (PPARα), which can promote ISC proliferation. Expectedly, HBG facilitated the expression of intestinal PPARα and the proliferation of ISCs in colitis mice. Further experiments verified that DHA significantly facilitated the expression of PPARα and the proliferation of ISCs in intestinal organoids. Intriguingly, the effect of DHA on ISC proliferation was reversed by the PPARα inhibitor. Together, our data indicate that HBG might accelerate PPARα-mediated ISC proliferation through DHA. This provides new insights into the effective application of polysaccharides in maintaining intestinal homeostasis.

2.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38779924

RESUMEN

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Asunto(s)
Antioxidantes , Fermentación , Jugos de Frutas y Vegetales , Frutas , Lactobacillus plantarum , Lycium , Polifenoles , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Polifenoles/metabolismo , Polifenoles/química , Antioxidantes/metabolismo , Antioxidantes/química , Jugos de Frutas y Vegetales/análisis , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Lycium/química , Lycium/metabolismo , Pectinas/metabolismo , Pectinas/química
3.
Food Chem ; 450: 139335, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642533

RESUMEN

Laotan Suancai, a popular traditional Chinese fermented vegetable, is manufactured in the industry via four fermentation rounds. However, the differences in flavor quality of Laotan Suancai from the four fermentation rounds and the causes of this variation remain unclear. Metabolome analysis indicated that the different content of five taste compounds and 31 aroma compounds caused the differences in flavor quality among the variated fermentation rounds of Laotan Suancai. Amplicon sequencing indicated that the microbial succession exhibited a certain pattern during four fermentation rounds and further analysis unveiled that organic acids drove the microbiota shift to more acid-resistant populations. Spearman correlation analysis highlighted that seven core microbes may be involved in the formation of differential flavor and the corresponding metabolic pathways were reconstructed by function prediction. Our findings offer a novel perspective on comprehending the deterioration of flavor quality across the fermentation rounds of Laotan Suancai.


Asunto(s)
Bacterias , Fermentación , Aromatizantes , Metaboloma , Microbiota , Gusto , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aromatizantes/metabolismo , Aromatizantes/química , Alimentos Fermentados/análisis , Alimentos Fermentados/microbiología , Odorantes/análisis , Humanos , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Verduras/microbiología , Verduras/metabolismo , Verduras/química
4.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672913

RESUMEN

Acid hydrolysis serves as the primary method for determining the monosaccharide composition of polysaccharides. However, inappropriate acid hydrolysis conditions may catalyze the breakdown of monosaccharides such as fructans (Fru), generating non-sugar by-products that affect the accuracy of monosaccharide composition analysis. In this study, we determined the monosaccharide recovery rate and non-sugar by-product formation of inulin-type fructan (ITF) and Fru under varied acid hydrolysis conditions using HPAEC-PAD and UPLC-Triple-TOF/MS, respectively. The results revealed significant variations in the recovery rate of Fru within ITF under different hydrolysis conditions, while glucose remained relatively stable. Optimal hydrolysis conditions for achieving a relatively high monosaccharide recovery rate for ITF entailed 80 °C, 2 h, and 1 M sulfuric acid. Furthermore, we validated the stability of Fru during acid hydrolysis. The results indicated that Fru experienced significant degradation with an increasing temperature and acid concentration, with a pronounced decrease observed when the temperature exceeds 100 °C or the H2SO4 concentration surpasses 2 M. Finally, three common by-products associated with Fru degradation, namely 5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, and furfural, were identified in both Fru and ITF hydrolysis processes. These findings revealed that the degradation of Fru under acidic conditions was a vital factor leading to inaccuracies in determining the Fru content during ITF monosaccharide analysis.

5.
Food Funct ; 15(8): 4462-4474, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38563684

RESUMEN

Fermented soymilk (FSM4) has attracted much attention due to its nutritional and health characteristics. Exploring FSM4 products to alleviate diarrhea can ensure their effectiveness as a therapeutic food for alleviating gastrointestinal disorders. However, the relationship between gut microbiota and gut metabolite production remains unknown during diarrheal episodes. Therefore, the diarrhea-alleviating role and mechanisms of FSM4 in diarrhea rats were investigated via biochemical, gut microbiota, and serum metabolite analyses. The findings showed that consuming FSM4 improved diarrhea symptoms and reduced systemic inflammation better than non-fermented soymilk (NFSM). It is worth noting that FSM4 promoted the diversity, richness, structure, and composition of gut microbiota. It increased the ability to reduce inflammation associated with harmful bacteria (Anaerofilum, Flavonifractor, Bilophila, Anaerostipes, [Ruminococcus]_torques_group, Clostridium_sensu_stricto_1, Turicibacter, Ruminococcus_1, Ruminiclostridium_6, Prevotellaceae_NK3B31_group and Fusicatenibacter), while stimulating the growth of healthy species (Lactobacillus, Ruminococcaceae_UCG-014, Oscillibacter, [Eubacterium]_coprostanoligenes_group, Negativibacillus, and Erysipelotrichaceae_UCG-003). Moreover, metabolomics analysis showed that lipid metabolites such as lysophosphatidylethanolamine (LysoPE) and sphingolipids were upregulated in the NG group, closely related to pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α, and IFN-γ) and the aforementioned pathogenic bacteria. Notably, in treatment groups, especially FSM4, the accumulation of L-ornithine, aspartic acid, ursocholic acid, 18-oxooleate, and cyclopentanethiol was increased, which was robustly associated with the anti-inflammatory factor IL-10 and beneficial bacteria mentioned above. Therefore, it can be inferred that the amino acids, bile acid, 18-oxooleate, and cyclopentanethiol produced in the FSM4 group can serve as metabolic biomarkers, which synergistically act with the gut microbiota to help alleviate inflammation for diarrhea remission. Overall, FSM4 may provide a new alternative, as an anti-inflammatory diet, to alleviate diarrhea.


Asunto(s)
Diarrea , Fermentación , Microbioma Gastrointestinal , Metabolómica , Probióticos , Leche de Soja , Diarrea/microbiología , Diarrea/metabolismo , Animales , Ratas , Probióticos/farmacología , Masculino , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Ratas Sprague-Dawley
6.
Food Funct ; 15(9): 4874-4886, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38590277

RESUMEN

Lactiplantibacillus plantarum NCUH001046 (LP)-fermented tomatoes exhibited the potential to alleviate obesity in our previous study. This subsequent study further delves deeper into the effects of LP fermentation on the physicochemical properties, bioactivities, and hepatic lipid metabolism modulation of tomatoes, as well as the analysis of potential bioactive compounds exerting obesity-alleviating effects. Results showed that after LP fermentation, viable bacterial counts peaked at 9.11 log CFU mL-1 and sugar decreased, while organic acids, umami amino acids, total phenols, and total flavonoids increased. LP fermentation also improved the inhibition capacities of three digestive enzyme activities and Enterobacter cloacae growth, as well as antioxidant activities. Western blot results indicated that fermented tomatoes, especially live probiotic-fermented tomatoes (LFT), showed improved effects compared to unfermented tomatoes in reducing hepatic lipid accumulation by activating the AMPK signal pathway. UHPLC-Q-TOF/MS-based untargeted metabolomics analysis showed that chlorogenic acid, capsiate, tiliroside, irisflorentin, and homoeriodictyol levels increased after fermentation. Subsequent cell culture assays demonstrated that irisflorentin and homoeriodictyol reduced lipid accumulation via enhancing AMPK expression in oleic acid-induced hyperlipidemic HepG2 cells. Furthermore, Spearman's correlation analysis indicated that the five phenols were positively associated with hepatic AMPK pathway activation. Consequently, it could be inferred that the five phenols may be potential bioactive compounds in LFT to alleviate obesity and lipid metabolism disorders. In summary, these findings underscored the transformative potential of LP fermentation in enhancing the bioactive profile of tomatoes and augmenting its capacity to alleviate obesity and lipid metabolism disorders. This study furnished theoretical underpinnings for the functional investigation of probiotic-fermented plant-based foods.


Asunto(s)
Fermentación , Metabolismo de los Lípidos , Probióticos , Solanum lycopersicum , Solanum lycopersicum/química , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Probióticos/farmacología , Células Hep G2 , Hígado/metabolismo , Masculino , Animales , Obesidad/metabolismo , Lactobacillus plantarum/metabolismo , Ratones
7.
Food Sci Biotechnol ; 33(5): 1207-1219, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38440689

RESUMEN

Microbial treatment can reduce the antinutritional factors and allergenic proteins in corn-soybean meal mixture (CSMM), but the role of the microbial community in hypoallergenicity and digestibility during the fermentation process remains unclear. Therefore, the fermentation strains of Bacillus and LAB were determined, and the compatibility and fermentation process of two-stage solid fermentation composite bacteria were optimized, and the dynamic changes in physicochemical property and microbial community during two-stage fermentation were investigated. Results showed that Bacillus subtilis NCUBSL003 and Lactobacillus acidophilus NCUA065016 were the best fermentation combinations. The optimal fermentation conditions were inoculum 7.14%, solid-liquid ratio of 1:0.88 and fermentation time of 74.30 h. The contents of TI, ß-conglycinin and glycinin decreased significantly after fermentation. Besides, TCA-SP, small peptides and FAA increased. Bacillus and Lactobacillus were the main genera. Pathogenic bacteria genera were inhibited effectively. This study suggests the feasibility of two-stage fermentation in improving the nutrient values and safety of the CSMM. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01426-7.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38319538

RESUMEN

Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.

9.
Int J Biol Macromol ; 262(Pt 1): 129811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302018

RESUMEN

Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and ß-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between ß-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 µM) and ALIPSF (IC50 = 558.99 µM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.


Asunto(s)
Lactobacillus plantarum , Sesamum , Antihipertensivos/farmacología , Lactobacillus plantarum/metabolismo , Fermentación , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química , Zinc/metabolismo , Peptidil-Dipeptidasa A/metabolismo
10.
Mol Nutr Food Res ; 68(5): e2300586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299716

RESUMEN

SCOPE: Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS: Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1ß, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION: FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Probióticos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Dextranos , Receptores Activados del Proliferador del Peroxisoma , Inflamación , Probióticos/farmacología , Ácido Butírico , Sulfatos , Sodio , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL
11.
Food Res Int ; 177: 113865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225131

RESUMEN

Laotan Suancai, a Chinese traditional fermented vegetable, possesses a unique flavor that depends on the fermentative microbiota. However, the drivers of microbial succession and the correlation between flavor and active microbiota remain unclear. A total of 21 characteristic flavor metabolites were identified in Laotan Suancai by metabolomics, including 8 sulfides, 6 terpenes, 3 organic acids, 2 isothiocyanates, 1 ester, and 1 pyrazine. Metatranscriptome analysis revealed variations in the active microbiota at different stages of fermentation, and further analysis indicated that organic acids were the primary drivers of microbial succession. Additionally, we reconstructed the metabolic network responsible for the formation of characteristic flavor compounds and identified Companilactobacillus alimentarius, Weissella cibaria, Lactiplantibacillus plantarum, and Loigolactobacillus coryniformis as the core functional microbes involved in flavor development. This study contributed to profoundly understanding the relationship between the active microbiota and flavor quality formation, as well as the targeted selection of starters with flavor regulation abilities.


Asunto(s)
Microbiota , Compuestos Orgánicos Volátiles , Fermentación , Bacterias/genética , Bacterias/metabolismo , Microbiota/fisiología , Metabolómica , Compuestos Orgánicos Volátiles/metabolismo
12.
Food Funct ; 15(3): 1170-1190, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38206113

RESUMEN

Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Lactobacillales , Probióticos , Lactante , Animales , Humanos , Helicobacter pylori/fisiología , Mucosa Gástrica/metabolismo , Heces/microbiología , Probióticos/farmacología , Boca/patología , Infecciones por Helicobacter/microbiología
13.
J Sci Food Agric ; 104(4): 2006-2014, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909354

RESUMEN

BACKGROUND: Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT: The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION: The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.


Asunto(s)
Antialérgicos , Lactobacillales , Hipersensibilidad al Cacahuete , Hipersensibilidad al Cacahuete/prevención & control , Antígenos de Plantas/metabolismo , Antialérgicos/farmacología , Lactobacillus/metabolismo , Proteínas de Plantas/metabolismo , Arachis/química , Alérgenos/química , Lactobacillales/metabolismo
14.
Int J Biol Macromol ; 256(Pt 1): 128030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981289

RESUMEN

Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 â†’ or →2)-Fruf-(1 â†’ with branching →1,6)-Fruf-(2 â†’ and terminates in Glcp-(1 â†’ or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.


Asunto(s)
Fructanos , Polygonatum , Fructanos/química , Inulina/química , Polygonatum/química , Hidrólisis , Polisacáridos/química , Glucosa , Ácidos
15.
Food Chem ; 440: 137453, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154284

RESUMEN

Fermented plant-based foods that catering to consumers' diverse dietary preferences play an important role in promoting human health. Recent exploration of their nutritional value has sparked increasing interest in the structural and bioactive changes of polysaccharides during fermentation, the essential components of plant-based foods which have been extensively studied for their structures and functional properties. Based on the latest key findings, this review summarized the dominant fermented plant-based foods in the market, the involved microbes and plant polysaccharides, and the corresponding modification in polysaccharides structure. Further microbial utilization of these polysaccharides, influencing factors, and the potential contributions of altered structure to the functions of polysaccharides were collectively illustrated. Moreover, future research trend was proposed, focusing on the directional modification of polysaccharides and exploration of the mechanisms underlying structural changes and enhanced biological activity during fermentation.


Asunto(s)
Dieta , Alimentos Fermentados , Humanos , Fermentación , Polisacáridos/farmacología , Valor Nutritivo
16.
Front Med (Lausanne) ; 10: 1324473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38131043

RESUMEN

Helicobacter pylori (H. pylori) is a gastric-persistent pathogen that can cause peptic ulcer disease, gastric cancer, and mucosal-associated lymphoid tissue lymphoma. This pathogen is commonly treated with antibiotic-based triple or quadruple therapy. However, antibiotic therapy could result in the bacterial resistance, imbalance of gut microbiota, and damage to the liver and kidneys, etc. Therefore, there is an urgent need for alternative therapeutic strategies. Interestingly, natural food resources, like vegetables, fruits, spices, and edible herbs, have potent inhibitory effects on H. pylori. In this review, we systematically summarized these foods with supporting evidence from both animal and clinical studies. The results have indicated that natural foods may possess temporary inhibition effect on H. pylori rather than durable eradication, and may help to reduce H. pylori colonization, enhance the effect of antibiotics and modulate the host's immune response.

17.
Int J Biol Macromol ; 253(Pt 6): 127307, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37813213

RESUMEN

Gut played a potent role in onset and progression of metabolic disorders, presenting an exciting direction for diabetes prevention. Here, the anti-diabetic effects of White hyacinth bean polysaccharides (WHBP) were observed, including the reduction of blood glucose levels and improvement of intestinal impairment in type 2 diabetes mellitus (T2DM) rats. Further data concerning intestinal protection suggested that WHBP restored intestinal barrier, as evidenced by inhibition of intestinal pathological damage, up-regulation of Zonula occluden-1 expression and manipulation of the redox system in T2DM rats. Moreover, WHBP-mediated anti-diabetic effects were in parallel with the adjustment of changes in gut microbiota composition of T2DM rats. Meanwhile, hypersecretion of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone levels, which were critical coordinators of the hypothalamic-pituitary-adrenal (HPA) axis, were suppressed in T2DM rats exposed to WHBP, indicating that WHBP-mediated health benefits were referring to regulate brain feedback in reduction of HPA axis. Concomitantly, further suggested and expanded on gut-brain communication by data of microbial metabolites short-chain fatty acids, mediators of gut-brain interactions, were remarkably raised in cecum contents of T2DM rats subjected to WHBP. Collectively, WHBP performed anti-diabetic effects were associated with control of microbiota-gut-brain axis implicated in intestinal barrier, HPA axis, gut microbiota and their metabolites.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hyacinthus , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Eje Cerebro-Intestino , Sistema Hipófiso-Suprarrenal/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo
18.
Anim Sci J ; 94(1): e13869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751996

RESUMEN

The aim of this study was to isolate and characterize Lactic Acid Bacteria (LAB) from 16 feces samples of pig farm, and to evaluate the probiotic potential of these isolates as potential oral probiotic candidates. The selection process was based on the isolation, identification, and a series of experiments for the selection of appropriate candidates with beneficial properties. The results demonstrated that most of LAB showed relatively strong resistance to pH 2.5 and high bile salts (1%), and had good survival in simulated gastric and intestinal juice. 9 isolates displayed antimicrobial activities against Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Enterobacter sakazakii. Almost all isolates were sensitive to ampicillin, chloramphenicol, vancomycin and amoxicillin, and most of isolates exhibited resistance against tetracycline and vancomycin. The adhesion rates of LAB varied greatly. The results of the study suggested that the Lactobacillus acidophilus NCUA065001 have the important functional property of probiotic candidates to enhance gut integrity and could considered to be the potential antibiotic alternatives in the pig feed industry.


Asunto(s)
Lactobacillales , Probióticos , Animales , Porcinos , Lactobacillus acidophilus , Vancomicina , Heces/microbiología , Antibacterianos/farmacología , Probióticos/farmacología
19.
J Agric Food Chem ; 71(27): 10361-10374, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37390401

RESUMEN

The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Lactobacillales , Ratones , Animales , Ratones Obesos , Proteínas Quinasas Activadas por AMP , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación , Bacterias/genética , Lípidos/farmacología , Ratones Endogámicos C57BL
20.
Microb Pathog ; 181: 106216, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37391100

RESUMEN

The subject of this study was to screen lactic acid bacteria (LAB) with pathogen translocation inhibition and investigate the potential inhibition mechanism of it. Pathogens colonized in the intestine could cross the intestinal barrier to access blood circulation, causing severe complications. This study aimed to screen LAB with favorable inhibitory effects on the translocation of enterinvasive Escherichia coli CMCC44305 (E. coli) and Cronobacter sakazakii CMCC45401 (C. sakazakii), which were two common intestinal opportunistic pathogens. After an elaborate screening procedure including adhesion, antibacterial, and translocation assay, Limosilactobacillus fermentum NCU003089 (L. fermentum NCU3089) and Lactiplantibacillus plantarum NCU0011261 (L. plantarum NCU1261) were found to inhibit 58.38% and 66.85% of pathogen translocation, respectively. Subsequently, LAB pre-treatment suppressed the decline in TEER of Caco-2 monolayers caused by pathogens. Meanwhile, L. fermentum NCU3089 significantly inhibited claudin-1, ZO-1, and JAM-1 degradation caused by E. coli, and L. plantarum NCU1261 markedly reduced claudin-1 degradation caused by C. sakazakii. Also, the two LAB strains significantly decreased TNF-α level. In addition, L. fermentum NCU3089 but not L. plantarum NCU1261 tolerated well in the gastrointestinal fluids, and they were both sensitive or intermediate to nine common clinical antibiotics without hemolytic activity. In short, the two LAB strains could inhibit pathogen translocation by competing for adhesion sites, secreting antibacterial substances, reducing inflammatory cytokines levels, and maintaining intestinal barrier integrity. This study provided a feasible solution to prevent pathogen infection and translocation, and the two LAB strains were safe and had potential in food and pharmaceutical applications.


Asunto(s)
Cronobacter sakazakii , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Humanos , Escherichia coli , Células CACO-2 , Claudina-1/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacología , Antibacterianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...