Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116533, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850697

RESUMEN

The widespread utilization of plastic products ineluctably leads to the ubiquity of nanoplastics (NPs), causing potential risks for aquatic environments. Interactions of NPs with mineral surfaces may affect NPs transport, fate and ecotoxicity. This study aims to investigate systematically the deposition and aggregation behaviors of carboxylated polystyrene nanoplastics (COOH-PSNPs) by four types of clay minerals (illite, kaolinite, Na-montmorillonite, and Ca-montmorillonite) under various solution chemistry conditions (pH, temperature, ionic strength and type). Results demonstrate that the deposition process was dominated by electrostatic interactions. Divalent cations (i.e., Ca2+, Mg2+, Cd2+, or Pb2+) were more efficient for screening surface negative charges and compressing the electrical double layer (EDL). Hence, there were significant increases in deposition rates of COOH-PSNPs with clay minerals in suspension containing divalent cations, whereas only slight increases in deposition rates of COOH-PSNPs were observed in monovalent cations (Na+, K+). Negligible deposition occurred in the presence of anions (F-, Cl-, NO3-, CO32-, SO42-, or PO43-). Divalent Ca2+ could incrementally facilitate the deposition of COOH-PSNPs through Ca2+-assisted bridging with increasing CaCl2 concentrations (0-100 mM). The weakened deposition of COOH-PSNPs with increasing pH (2.0-10.0) was primarily attributed to the reduce in positive charge density at the edges of clay minerals. In suspensions containing 2 mM CaCl2, increased Na+ ionic strength (0-100 mM) and temperature (15-55 ◦C) also favored the deposition of COOH-PSNPs. The ability of COOH-PSNPs deposited by four types of clay minerals followed the sequence of kaolinite > Na-montmorillonite > Ca-montmorillonite > illite, which was related to their structural and surface charge properties. This study revealed the deposition behaviors and mechanisms between NPs and clay minerals under environmentally representative conditions, which provided novel insights into the transport and fate of NPs in natural aquatic environments.


Asunto(s)
Calcio , Arcilla , Contaminantes Químicos del Agua , Arcilla/química , Calcio/química , Calcio/análisis , Contaminantes Químicos del Agua/química , Concentración Osmolar , Concentración de Iones de Hidrógeno , Silicatos de Aluminio/química , Poliestirenos/química , Temperatura , Minerales/química , Bentonita/química , Nanopartículas/química , Caolín/química , Electricidad Estática
2.
Sci Total Environ ; 904: 166783, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666342

RESUMEN

The ubiquitous nanoplastics (NPs) in the environment are emerging contaminants due to their risks to human health and ecosystems. The interaction between NPs and minerals determines the environmental and ecological risks of NPs. In this study, the deposition behaviors of carboxyl modified polystyrene nanoplastics (COOH-PSNPs) with goethite (α-FeOOH) were systematically investigated under various solution chemistry and organic macromolecules (OMs) conditions (i.e., pH, ionic type, humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA)). The study found that electrostatic interactions dominated the interaction between COOH-PSNPs and goethite. The deposition rates of COOH-PSNPs decreased with an increase in solution pH, due to the enhanced electrostatic repulsion by higher pH. Introducing cations or anions could compress the electrostatic double layers and compete for interaction sites on COOH-PSNPs and goethite, thereby reducing the deposition rates of COOH-PSNPs. The stabilization effects, which were positive with ions valence, followed the orders of NaCl ≈ KCl < CaCl2, NaNO3 ≈ NaCl < Na2SO4 < Na3PO4. Specific adsorption of SO42- or H2PO4- caused a potential reversal of goethite from positive to negative, leading to the electrostatic forces between COOH-PSNPs and goethite changed from attraction to repulsion, and thus significantly decreasing deposition of COOH-PSNPs. Organic macromolecules could markedly inhibit the deposition of COOH-PSNPs with goethite because of enhanced electrostatic repulsion, steric hindrance, and competition of surface binding sites. The ability for inhibiting the deposition of COOH-PSNPs followed the sequence of SA > HA > BSA, which was related to their structure (SA: linear, semi-flexible, HA: globular, semi-rigid, BSA: globular, with protein tertiary structure) and surface charge density (SA > HA > BSA). The results of this study highlight the complexity of the interactions between NPs and minerals under different environments and provide valuable insights in understanding transport mechanisms and environmental fate of nanoplastics in aquatic environments.

3.
J Hazard Mater ; 446: 130649, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587598

RESUMEN

Nanoplastics (NPs) are emerging contaminants in the environment, where the transport and fate of NPs would be greatly affected by interactions between NPs and minerals. In the present study, the interactions of two types of polystyrene nanoplastics (PSNPs), i.e., bare-PSNPs and carboxylated PSNPs-COOH, with iron (hydr)oxides (hematite, goethite, magnetite, and ferrihydrite), aluminum (hydr)oxides (boehmite and gibbsite), and clay minerals (kaolinite, montmorillonite, and illite) were investigated. The positively charged iron/aluminum (hydr)oxide minerals could form heteroaggregates with negatively charged PSNPs. Electrostatic and hydrophobic interaction dominate for the heteroaggregation of bare-PSNPs with iron/aluminum (hydr)oxide minerals, while ligand exchange and electrostatic interaction are involved in the heteroaggregation of PSNPs-COOH with iron/aluminum (hydr)oxides minerals. However, heteroaggregation between PSNPs and negatively charged clay minerals was negligible. Humic acid markedly suppressed such heteroaggregation between PSNPs and minerals due to enhanced electrostatic repulsion, steric hindrance, and competition of surface attachment sites. The heteroaggregation rates of both bare-PSNPs and PSNPs-COOH with hematite decreased with increasing solution pH. Increased ionic strength enhanced the heteroaggregation of PSNPs-COOH but inhibited that of bare-PSNPs. The results of the present study suggested that the heteroaggregation of PSNPs in environments could be strongly affected by minerals, solution pH, humic acid, and ionic strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...