Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Autophagy ; 20(1): 76-93, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647255

RESUMEN

Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1ß: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.


Asunto(s)
Inflamasomas , Tendinopatía , Humanos , Inflamasomas/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Macroautofagia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación , Ubiquitina/metabolismo , Indometacina/farmacología , Enzimas Desubicuitinizantes/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
mBio ; 14(4): e0351222, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37366613

RESUMEN

Stringent control of the type I interferon (IFN-I) signaling is critical for host immune defense against infectious diseases, yet the molecular mechanisms that regulate this pathway remain elusive. Here, we show that Src homology 2 containing inositol phosphatase 1 (SHIP1) suppresses IFN-I signaling by promoting IRF3 degradation during malaria infection. Genetic ablation of Ship1 in mice leads to high levels of IFN-I and confers resistance to Plasmodium yoelii nigeriensis (P.y.) N67 infection. Mechanistically, SHIP1 promotes the selective autophagic degradation of IRF3 by enhancing K63-linked ubiquitination of IRF3 at lysine 313, which serves as a recognition signal for NDP52-mediated selective autophagic degradation. In addition, SHIP1 is downregulated by IFN-I-induced miR-155-5p upon P.y. N67 infection and severs as a feedback loop of the signaling crosstalk. This study reveals a regulatory mechanism between IFN-I signaling and autophagy, and verifies SHIP1 can be a potential target for therapeutic intervention against malaria and other infectious diseases. IMPORTANCE Malaria remains a serious disease affecting millions of people worldwide. Malaria parasite infection triggers tightly controlled type I interferon (IFN-I) signaling that plays a critical role in host innate immunity; however, the molecular mechanisms underlying the immune responses are still elusive. Here, we discover a host gene [Src homology 2-containing inositol phosphatase 1 (SHIP1)] that can regulate IFN-I signaling by modulating NDP52-mediated selective autophagic degradation of IRF3 and significantly affect parasitemia and resistance of Plasmodium-infected mice. This study identifies SHIP1 as a potential target for immunotherapies in malaria and highlights the crosstalk between IFN-I signaling and autophagy in preventing related infectious diseases. SHIP1 functions as a negative regulator during malaria infection by targeting IRF3 for autophagic degradation.

3.
Sci Adv ; 9(25): eadg2339, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352355

RESUMEN

Stringent control of type I interferon (IFN-I) signaling is critical to potent innate immune responses against viral infection, yet the underlying molecular mechanisms are still elusive. Here, we found that Van Gogh-like 2 (VANGL2) acts as an IFN-inducible negative feedback regulator to suppress IFN-I signaling during vesicular stomatitis virus (VSV) infection. Mechanistically, VANGL2 interacted with TBK1 and promoted the selective autophagic degradation of TBK1 via K48-linked polyubiquitination at Lys372 by the E3 ligase TRIP, which serves as a recognition signal for the cargo receptor OPTN. Furthermore, myeloid-specific deletion of VANGL2 in mice showed enhanced IFN-I production against VSV infection and improved survival. In general, these findings revealed a negative feedback loop of IFN-I signaling through the VANGL2-TRIP-TBK1-OPTN axis and highlighted the cross-talk between IFN-I and autophagy in preventing viral infection. VANGL2 could be a potential clinical therapeutic target for viral infectious diseases, including COVID-19.


Asunto(s)
Interferón Tipo I , Proteínas Serina-Treonina Quinasas , Virosis , Animales , Ratones , Autofagia , Polaridad Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción , Virosis/inmunología , Interferón Tipo I/inmunología
4.
mBio ; 13(6): e0236122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36214572

RESUMEN

Innate immunity acts as the first line of defense against pathogen invasion. During Toxoplasma gondii infection, multiple innate immune sensors are activated by invading microbes or pathogen-associated molecular patterns (PAMPs). However, how inflammasome is activated and its regulatory mechanisms during T. gondii infection remain elusive. Here, we showed that the infection of PRU, a lethal type II T. gondii strain, activates inflammasome at the early stage of infection. PRU tachyzoites, RNA and soluble tachyzoite antigen (STAg) mainly triggered the NLRP3 inflammasome, while PRU genomic DNA (gDNA) specially activated the AIM2 inflammasome. Furthermore, mice deficient in AIM2, NLRP3, or caspase-1/11 were more susceptible to T. gondii PRU infection, and the ablation of inflammasome signaling impaired antitoxoplasmosis immune responses by enhancing type I interferon (IFN-I) production. Blockage of IFN-I receptor fulfilled inflammasome-deficient mice competent immune responses as WT mice. Moreover, we have identified that the suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator induced by inflammasome-activated IL-1ß signaling and inhibits IFN-I production by targeting interferon regulatory factor 3 (IRF3). In general, our study defines a novel protective role of inflammasome activation during toxoplasmosis and identifies a critical regulatory mechanism of the cross talk between inflammasome and IFN-I signaling for understanding infectious diseases. IMPORTANCE As a key component of innate immunity, inflammasome is critical for host antitoxoplasmosis immunity, but the underlying mechanisms are still elusive. In this study, we found that inflammasome signaling was activated by PAMPs of T. gondii, which generated a protective immunity against T. gondii invasion by suppressing type I interferon (IFN-I) production. Mechanically, inflammasome-coupled IL-1ß signaling triggered the expression of negative regulator SOCS1, which bound to IRF3 to inhibit IFN-I production. The role of IFN-I in anti-T. gondii immunity is little studied and controversial, and here we also found IFN-I is harmful to host antitoxoplasmosis immunity by using knockout mice and recombinant proteins. In general, our study identifies a protective role of inflammasomes to the host during T. gondii infection and a novel mechanism by which inflammasome suppresses IFN-I signaling in antitoxoplasmosis immunity, which will likely provide new insights into therapeutic targets for toxoplasmosis and highlight the cross talk between innate immune signaling in infectious diseases prevention.


Asunto(s)
Enfermedades Transmisibles , Interferón Tipo I , Toxoplasma , Toxoplasmosis , Animales , Ratones , Inflamasomas , Toxoplasma/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad Innata , Ratones Noqueados
5.
J Genet ; 992020.
Artículo en Inglés | MEDLINE | ID: mdl-33168793

RESUMEN

Gene rearrangements, such as anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), rearranged during transfection (RET) and neurotrophic receptor tyrosine kinase 1 (NTRK1), identified in cancer have been indicated to be robust therapeutic targets in lung carcinomas. However, a few studies have focussed on locally advanced rectal cancer (LARC). The discovery of novel gene fusions is also valuable for LARC research. We used mass spectrometry-based assays and RNA sequencing to detect both known ALK, ROS1, RET and NTRK1 rearrangements and novel gene fusions in LARC patients. FusionMap was also used to find gene fusions. None of the ALK, ROS1, RET or NTRK1 gene fusions were detected by mass spectrometry-based assays or RNA sequencing. Three fusion candidates, integrin subunit beta 7 (ITGB7)-ROS1, lamin A/C (LMNA)-NTRK1 and Golgi-associated PDZ and coiled-coil motif containing (GOPC)-keratin 8 (KRT8), showed relatively high junction-spanning reads by the FusionMap algorithm, but did not pass validation. These results suggest that no ALK, ROS1 or RET rearrangements were found in LARC.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Biomarcadores de Tumor/genética , Reordenamiento Génico , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Adulto , Anciano , Biomarcadores de Tumor/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA