Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(24): 9679-9686, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37294563

RESUMEN

Adjusting the local coordination environment of lanthanide luminescent ions can modulate their crystal-field splittings and broaden their applications in the relevant optical fields. Here, we introduced Eu3+ ions into the phase-change K3Lu(PO4)2 phosphate and found that the temperature-induced reversible phase transitions of K3Lu(PO4)2 (phase I ⇆ phase II and phase II ⇆ phase III, below room temperature) give rise to an obvious photoluminescence (PL) difference of Eu3+ ions. The Eu3+ emission mainly focused on the 5D0 → 7F1 transition in phase III but manifested comparable 5D0 → 7F1,2 transitions in the two low-temperature phases. On this basis, the change of Eu3+-doped concentration led to the phase evolution in Eu3+:K3Lu(PO4)2, which could stabilize two types of low-temperature polymorphs to the specific temperature by controlling the doping content. Finally, we proposed a feasible information encryption strategy based on the PL modulation of Eu3+:K3Lu(PO4)2 phosphors, which was caused by the temperature hysteresis of the relevant phase transition, exhibiting good stability and reproducibility. Our findings pave an avenue for exploring the optical application of lanthanide-based luminescent materials by introducing phase-change hosts.

2.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904732

RESUMEN

Sensors have been used in various agricultural production scenarios due to significant advances in the Agricultural Internet of Things (Ag-IoT), leading to smart agriculture. Intelligent control or monitoring systems rely heavily on trustworthy sensor systems. Nonetheless, sensor failures are likely due to various factors, including key equipment malfunction or human error. A faulty sensor can produce corrupted measurements, resulting in incorrect decisions. Early detection of potential faults is crucial, and fault diagnosis techniques have been proposed. The purpose of sensor fault diagnosis is to detect faulty data in the sensor and recover or isolate the faulty sensors so that the sensor can finally provide correct data to the user. Current fault diagnosis technologies are based mainly on statistical models, artificial intelligence, deep learning, etc. The further development of fault diagnosis technology is also conducive to reducing the loss caused by sensor failures.

3.
Inorg Chem ; 60(19): 14978-14987, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34555892

RESUMEN

Adjusting the local coordination environment of lanthanide luminescent ions is a useful method to manipulate the relevant photoluminescence (PL) property. K3Lu(PO4)2 is a phase-change material, and according to the stable temperature range from low to high, the related polymorphs are phase I [P21/m, coordination number (CN) of Lu3+ = 7], phase II (P21/m, CN = 6), and phase III (P3̅, CN = 6), respectively. Based on the temperature-dependent PL analysis of K3Lu(PO4)2:Pr3+, we find that Pr3+ ions occupy the noninversion sites (Cs) in the two low-temperature phases but preferentially enter into the inversion ones (C3i) in phase III. Compared to Pr3+-doped phase I (78 K), Pr3+ ions in phase III (300 K) manifest a weaker fluorescence intensity (170-fold lower). To enhance the room-temperature PL property of K3Lu(PO4)2:Pr3+, a polymorphous adjustment strategy was proposed by the use of the ion-doping method. By introducing the Gd3+ ions into the lattice, Pr3+-doped phase I is successfully stabilized to room temperature, manifesting a 27-fold fluorescence increase in comparison to K3Lu(PO4)2:Pr3+ (0.1 at. %). The finding discussed in this study highlights the significance of site engineering for luminescent ions and also presents the application value of phase-change hosts in the development of high-performance luminescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...