Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(22): 10366-10372, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38772004

RESUMEN

The accurate manipulation of the species and locations of catalytic centers is crucial for regulating the catalytic activity of catalysts, which is essential for their efficient design and development. Metal-organic frameworks (MOFs) with coordinated metal sites are ideal materials for investigating the origin of catalytic activity. In this study, we present a Ni2-MOF featuring novel Ni-based binuclear nodes with open metal sites (OMSs) and saturated metal sites (SMSs). The nickel was replaced by iron to obtain Ni1Fe1-MOF. In the electrocatalytic oxygen evolution reaction, Ni1Fe1-MOF exhibited an overpotential and Tafel slope of 370 mV@10 mA cm-2 and 87.06 mV dec-1, respectively, which were higher than those of Ni2-MOF (283 mV@10 mA cm-2 and 39.59 mV dec-1, respectively), demonstrating the superior performance of Ni1Fe1-MOF. Furthermore, theoretical calculations revealed that iron as an SMS may effectively regulate the electronic structure of the nickel catalytic center to reduce the free energy barrier ΔG*OH of the rate-determining step.

2.
Bioinformatics ; 39(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37707514

RESUMEN

SUMMARY: Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThings Explorer is distributed as a lightweight application that dynamically retrieves information at query time. AVAILABILITY AND IMPLEMENTATION: More information can be found at https://explorer.biothings.io and code is available at https://github.com/biothings/biothings_explorer.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas
3.
ArXiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131885

RESUMEN

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

4.
BMC Bioinformatics ; 24(1): 159, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081398

RESUMEN

BACKGROUND: Biomedical researchers are strongly encouraged to make their research outputs more Findable, Accessible, Interoperable, and Reusable (FAIR). While many biomedical research outputs are more readily accessible through open data efforts, finding relevant outputs remains a significant challenge. Schema.org is a metadata vocabulary standardization project that enables web content creators to make their content more FAIR. Leveraging Schema.org could benefit biomedical research resource providers, but it can be challenging to apply Schema.org standards to biomedical research outputs. We created an online browser-based tool that empowers researchers and repository developers to utilize Schema.org or other biomedical schema projects. RESULTS: Our browser-based tool includes features which can help address many of the barriers towards Schema.org-compliance such as: The ability to easily browse for relevant Schema.org classes, the ability to extend and customize a class to be more suitable for biomedical research outputs, the ability to create data validation to ensure adherence of a research output to a customized class, and the ability to register a custom class to our schema registry enabling others to search and re-use it. We demonstrate the use of our tool with the creation of the Outbreak.info schema-a large multi-class schema for harmonizing various COVID-19 related resources. CONCLUSIONS: We have created a browser-based tool to empower biomedical research resource providers to leverage Schema.org classes to make their research outputs more FAIR.


Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Metadatos
5.
Sci Data ; 10(1): 99, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823157

RESUMEN

Biomedical datasets are increasing in size, stored in many repositories, and face challenges in FAIRness (findability, accessibility, interoperability, reusability). As a Consortium of infectious disease researchers from 15 Centers, we aim to adopt open science practices to promote transparency, encourage reproducibility, and accelerate research advances through data reuse. To improve FAIRness of our datasets and computational tools, we evaluated metadata standards across established biomedical data repositories. The vast majority do not adhere to a single standard, such as Schema.org, which is widely-adopted by generalist repositories. Consequently, datasets in these repositories are not findable in aggregation projects like Google Dataset Search. We alleviated this gap by creating a reusable metadata schema based on Schema.org and catalogued nearly 400 datasets and computational tools we collected. The approach is easily reusable to create schemas interoperable with community standards, but customized to a particular context. Our approach enabled data discovery, increased the reusability of datasets from a large research consortium, and accelerated research. Lastly, we discuss ongoing challenges with FAIRness beyond discoverability.


Asunto(s)
Enfermedades Transmisibles , Conjuntos de Datos como Asunto , Metadatos , Reproducibilidad de los Resultados , Conjuntos de Datos como Asunto/normas , Humanos
6.
bioRxiv ; 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35677074

RESUMEN

Background: Biomedical researchers are strongly encouraged to make their research outputs more Findable, Accessible, Interoperable, and Reusable (FAIR). While many biomedical research outputs are more readily accessible through open data efforts, finding relevant outputs remains a significant challenge. Schema.org is a metadata vocabulary standardization project that enables web content creators to make their content more FAIR. Leveraging schema.org could benefit biomedical research resource providers, but it can be challenging to apply schema.org standards to biomedical research outputs. We created an online browser-based tool that empowers researchers and repository developers to utilize schema.org or other biomedical schema projects. Results: Our browser-based tool includes features which can help address many of the barriers towards schema.org -compliance such as: The ability to easily browse for relevant schema.org classes, the ability to extend and customize a class to be more suitable for biomedical research outputs, the ability to create data validation to ensure adherence of a research output to a customized class, and the ability to register a custom class to our schema registry enabling others to search and re-use it. We demonstrate the use of our tool with the creation of the Outbreak.info schemaâ€"a large multi-class schema for harmonizing various COVID-19 related resources. Conclusions: We have created a browser-based tool to empower biomedical research resource providers to leverage schema.org classes to make their research outputs more FAIR.

7.
Bioinformatics ; 38(7): 2077-2079, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35020801

RESUMEN

SUMMARY: To meet the increased need of making biomedical resources more accessible and reusable, Web Application Programming Interfaces (APIs) or web services have become a common way to disseminate knowledge sources. The BioThings APIs are a collection of high-performance, scalable, annotation as a service APIs that automate the integration of biological annotations from disparate data sources. This collection of APIs currently includes MyGene.info, MyVariant.info and MyChem.info for integrating annotations on genes, variants and chemical compounds, respectively. These APIs are used by both individual researchers and application developers to simplify the process of annotation retrieval and identifier mapping. Here, we describe the BioThings Software Development Kit (SDK), a generalizable and reusable toolkit for integrating data from multiple disparate data sources and creating high-performance APIs. This toolkit allows users to easily create their own BioThings APIs for any data type of interest to them, as well as keep APIs up-to-date with their underlying data sources. AVAILABILITY AND IMPLEMENTATION: The BioThings SDK is built in Python and released via PyPI (https://pypi.org/project/biothings/). Its source code is hosted at its github repository (https://github.com/biothings/biothings.api). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Investigación Biomédica , Programas Informáticos , Almacenamiento y Recuperación de la Información
8.
BMC Bioinformatics ; 19(1): 30, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390967

RESUMEN

BACKGROUND: Application Programming Interfaces (APIs) are now widely used to distribute biological data. And many popular biological APIs developed by many different research teams have adopted Javascript Object Notation (JSON) as their primary data format. While usage of a common data format offers significant advantages, that alone is not sufficient for rich integrative queries across APIs. RESULTS: Here, we have implemented JSON for Linking Data (JSON-LD) technology on the BioThings APIs that we have developed, MyGene.info , MyVariant.info and MyChem.info . JSON-LD provides a standard way to add semantic context to the existing JSON data structure, for the purpose of enhancing the interoperability between APIs. We demonstrated several use cases that were facilitated by semantic annotations using JSON-LD, including simpler and more precise query capabilities as well as API cross-linking. CONCLUSIONS: We believe that this pattern offers a generalizable solution for interoperability of APIs in the life sciences.


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Disciplinas de las Ciencias Biológicas , Bases de Datos Factuales , Humanos , Internet
9.
Genome Biol ; 17(1): 91, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154141

RESUMEN

Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.


Asunto(s)
Variación Genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Programas Informáticos , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Humanos , Internet , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...