Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(4): e2300723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622797

RESUMEN

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.


Asunto(s)
Compuestos de Anilina , Hidrolasas de Éster Carboxílico , Poliésteres , Poliuretanos , Poliésteres/química , Amidohidrolasas
2.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445906

RESUMEN

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudios Prospectivos , Biodegradación Ambiental , Poliésteres/metabolismo , Plásticos
4.
Microbiol Spectr ; 11(3): e0498822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37067433

RESUMEN

Biotransformation of plastics or their depolymerization monomers as raw materials would offer a better end-of-life solutions to the plastic waste dilemma. 1,4-butanediol (BDO) is one of the major depolymerization monomers of many plastics polymers. BDO valorization presents great significance for waste plastic up-recycling and fermenting feedstock exploitation. In the present study, atmospheric pressure room temperature plasma (ARTP)-induced mutation combined with adaptive laboratory evolution (ALE) was used to improve the BDO utilization capability of Pseudomonas putida KT2440. The excellent mutant P. putida NB10 was isolated and stored in the China Typical Culture Preservation Center (CCTCC) with the deposit number M 2021482. Whole-genome resequencing and transcriptome analysis revealed that the BDO degradation process consists of ß-oxidation, glyoxylate carboligase (GCL) pathway, glyoxylate cycle and gluconeogenesis pathway. The imbalance between the two key intermediates (acetyl-CoA and glycolyl-CoA) and the accumulation of cytotoxic aldehydes resulted in the weak metabolism performance of KT2440 in the utilization of BDO. The balance of the carbon flux and enhanced tolerance to cytotoxic intermediates endow NB10 with great BDO degradation capability. This study deeply revealed the metabolic mechanism behind BDO degradation and provided an excellent chassis cell for BDO further up-cycling to high-value chemicals. IMPORTANCE Plastic waste represents not only a global pollution problem but also a carbon-rich, low-cost, globally renewable feedstock for industrial biotechnology. BDO is the basic material for polybutylene terephthalate (PBT), poly butylene adipate-co-terephthalate (PBAT), poly (butylene succinate) (PBS), etc. Herein, the construction of BDO valorization cell factory presents great significance for waste plastic up-recycling and novel fermentation feedstock exploitation. However, BDO is hard to be metabolized and its metabolic pathway is unclear. This study presents a P. putida mutant NB10, obtained through the integration of ARTP and ALE, displaying significant growth improvement with BDO as the sole carbon source. Further genome resequencing, transcriptome analysis and genetic engineering deeply revealed the metabolic mechanism behind BDO degradation in P. putida, this study offers an excellent microbial chassis and modification strategy for plastic waste up-cycling.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Mutación , Carbono/metabolismo , Plásticos/metabolismo
5.
J Hazard Mater ; 448: 130776, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706489

RESUMEN

Microorganisms capable of decomposing polyurethane (PU) and other plastics have the potential to be used in bio-recycling processes. In this study, 20 PU-degrading strains were isolated, including 11 bacteria and 9 fungi, using a synthesized poly(1,4-butylene adipate)-based PU (PBA-PU) as the screening substrate. Three PU substrates with increasing structure complexities were used for a thorough evaluation of microbial degradation capacity: Impranil® DLN-SD, PBA-PU film and PU foam waste. After 4 days, the best fungal PBA-PU degrader, Cladosporium sp. P7, could degrade 94.5% of Impranil® DLN-SD. After 28 days of cultivation, 32.42% and 43.91% of solid PBA-PU film was converted into soluble small molecules when used as the sole carbon source or in a medium with other co-carbon sources, respectively. Accordingly, the weight loss of PU foam waste after 15 days was 15.3% for the sole carbon condition and 83.83% for the co-carbon conditions. Furthermore, PBA-PU was used for metabolic pathway analysis because of its known composition and chemical structure. Six metabolites were identified during the degradation process of PBA-PU, including adipic acid (AA), 1,4-butanediol (BDO), and 4,4'-methylenedianiline (MDA), which can also be used as the sole carbon source to grow the fungal strain P7, resulting in the discovery of two MDA metabolites during the cultivation processes. Based on the presence of these eight metabolites, we hypothesized that PBA-PU is first depolymerized by the fungal strain P7 via ester and urethane bond hydrolysis, followed by intracellular metabolism and mineralization of the three monomers to CO2 and H2O.


Asunto(s)
Cladosporium , Poliuretanos , Poliuretanos/química , Cladosporium/metabolismo , Poliésteres , Biodegradación Ambiental , Hongos/metabolismo , Redes y Vías Metabólicas , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA