Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 944: 173742, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38839012

RESUMEN

Climate change is causing more frequent and intense heatwaves. Therefore, it is important to understand how heatwaves affect the terrestrial carbon cycle, especially in grasslands, which are especially susceptible to climate extremes. This study assessed the impact of naturally occurring, simultaneous short-term heatwaves on CO2 fluxes in three ecosystems on the Mongolia Plateau: meadow steppe (MDW), typical steppe (TPL), and shrub-grassland (SHB). During three heatwaves, net ecosystem productivity (NEP) was reduced by 86 %, 178 %, and 172 % at MDW, TPL, and SHB, respectively. The changes in ecosystem respiration, gross primary production, evapotranspiration, and water use efficiency were divergent, indicating the mechanisms underlying the observed NEP decreases among the sites. The impact of the heatwave in MDW was mitigated by the high soil water content, which enhanced evapotranspiration and subsequent cooling effects. However, at TPL, insufficient soil water led to combined thermal and drought stress and low resilience. At SHB, the ecosystem's low tolerance to an August heatwave was heavily influenced by species phenology, as it coincided with the key phenological growing phase of plants. The potential key mechanism of divergent NEP response to heatwaves lies in the divergent stability and varying importance of environmental factors, combined with the specific sensitivity of NEP to each factor in ecosystems. Furthermore, our findings suggest that anomalies in soil environment, rather than atmospheric anomalies, are the primary determinants of NEP anomalies during heatwaves. This challenges the conventional understanding of heatwaves as a discrete and ephemeral periods of high air temperatures. Instead, heatwaves should be viewed as chronologically variable, compound, and time-sensitive environmental stressors. The ultimate impact of heatwaves on ecosystems is co-determined by a complex interplay of environmental, biological, and heatwave features.


Asunto(s)
Cambio Climático , Pradera , Suelo , Suelo/química , Mongolia , Ciclo del Carbono , Ecosistema , Monitoreo del Ambiente , Calor
2.
Sci Total Environ ; 946: 174054, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897466

RESUMEN

Up to date, most studies reported that degradation is worsened in the grassland ecosystems of Inner Mongolia and adjacent regions as a result of intensified grazing. This seems to be scientific when considering the total forage or total above-ground biomass as a degradation indicator, but it does not hold true in terms of soil organic carbon density (SOCD). In this study, we quantified the changes of grassland ecosystem carbon stock in Inner Mongolia and adjacent regions from the 1980s to 2000s and identified the major drivers influencing these variations, using the National Grassland Resource Inventory and Soil Survey Dataset in 1980s and the Inventory data during 2002 to 2009 covering 624 sampling plots concerned vegetal traits and edaphic properties across the study region. The result indicated that the above-, below-ground and total vegetation biomass declined from the 1980s to 2000s by ∼ 10 %. However, total forage production increased by 6.72 % when considering livestock intake. SOCD remained stable despite a 67 % increase in grazing intensity. A generalized linear model (GLIM) analysis suggested that an increase in grazing intensity from the 1980s to 2000s could only explain 1.04 % of the total biomass change, while changes in precipitation and temperature explained 17.7 % (p < 0.05) of total vegetation biomass (TVB) change. Meanwhile, SOCD change during 1980s - 2000s could be explained 10.08 % by the soil texture (p < 0.05) and <1.6 % by changes in climate and livestock. This implies that the impacts of climate change on grassland biomass are more significant than those of grazing utilization, and SOCD was resistant to both climate change and intensified grazing. Overall, intensified grazing did not result in significant negative impacts on the grassland carbon stocks in the study region during the 1980s and 2000s. The grassland ecosystems possess a mechanism to adjust their root-shoot ratio, enabling them to maintain resilience against grazing utilization.

3.
Chemosphere ; 355: 141745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521100

RESUMEN

The application of carbon nanoparticles (CNPs) and biochar in agriculture for improving plant health and soil quality and alleviating metal stress offers alternative approaches to meet the ever-increasing demand for food. However, poor understanding of their roles in improving crop production under Cu stress represents a significant obstacle to their wide application in agriculture. To clarify how CNPs and biochar affect corn (Zea mays L.) seed germination, seedling growth, plant health, and nutrient uptake under different Cu stress levels, soil-less Petri-dish and greenhouse soil-based bioassays were conducted. The results revealed that CNPs and biochar stimulated corn seed germination and seedling growth. Besides, they were effective in immobilizing Cu2+ sorption in sandy soil and alleviating Cu stress for plant growth, as shown by the increased plant height and dry biomass. The plant nutrient uptake efficiency (NUE) was significantly increased by CNPs, with a maximum increase of 63.1% for N and 63.3% for K at the highest Cu2+ stress level (400 mg Cu2+ L-1). In contrast, non-significant effects on NUE were observed with biochar treatments regardless of Cu stress levels. Interestingly, CNPs significantly increased plant uptake of Cu in the Petri dish test, while biochar inhibited plant uptake of Cu under both experimental conditions. Principle component analysis (PCA) and Pearson correlation analysis indicated that CNPs mitigated Cu stress mainly by elevating antioxidant enzyme activities, enhancing plant photochemical efficiency, and increasing plant uptake of N and K, while biochar was more likely to reduce bioavailability and uptake of Cu in the plant. These findings have great implications for the application of CNPs and biochar as plant growth stimulators and de-toxicity agents in agriculture.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Cobre/farmacología , Cobre/análisis , Zea mays , Carbón Orgánico/farmacología , Suelo , Plantones , Semillas , Contaminantes del Suelo/análisis
4.
Sci Total Environ ; 920: 171014, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369163

RESUMEN

With the rapid development of the economy, household activities have emerged as an important source of greenhouse gas (GHG) emissions, making them a crucial focal point for research in the pursuit of sustainable development and carbon emission reduction. Hulunber, as a typical steppe region in eastern Eurasia, is representative of studying the GHG emissions from household ranches, which are the basic production units in this region. In this paper, based on survey data of 2018 and 2019, we quantified and assessed GHG emissions from household ranches by combining life cycle assessment (LCA) and structural equation modeling (SEM) approaches, with LCA to define household ranches system boundary and SEM to determine the key driving factors of emissions. The results showed that GHG emissions of meat sheep live weight was 23.54 kg CO2-eq/kg. The major contributor to household GHG emissions was enteric methane (55.23 %), followed by coal use (20.80 %) and manure management systems (9.16 %), and other contributing factors (14.81 %). The SEM results indicated that the GHG emissions from household ranches were derived primarily by economic level, while the economic level was significantly affected by income. This study also found a significant positive and linear correlation between household GHG emissions and the number of meat sheep (R2 = 0.89, P < 0.001). The GHG emissions from meat sheep production (67.52 %) were double times greater than household livelihood consumption (32.48 %). These findings emphasized the importance of reducing emissions from meat sheep production and adjusting the energy mix of household livelihood, contributing to the establishment of a low-carbon household livelihood operation.


Asunto(s)
Gases de Efecto Invernadero , Animales , Ovinos , Gases de Efecto Invernadero/análisis , Efecto Invernadero , Pradera , Carbono , Carne
5.
Sci Data ; 11(1): 181, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341473

RESUMEN

Mapping grazing intensity (GI) using satellites is crucial for developing adaptive utilization strategies according to grassland conditions. Here we developed a monitoring framework based on a paired sampling strategy and the classification probability of random forest algorithm to produce annual grazing probability (GP) and GI maps at 10-m spatial resolution from 2015 to 2021 for the largest temperate meadow in China (Hulun Buir grasslands), by harmonized Landsat 7/8 and Sentinel-2 images. The GP maps used values of 0-1 to present detailed grazing gradient information. To match widely used grazing gradients, annual GI maps with ungrazed, moderately grazed, and heavily grazed levels were generated from the GP dataset with a decision tree. The GI maps for 2015-2021 had an overall accuracy of more than 0.97 having significant correlations with the statistical data at city (r = 0.51) and county (r = 0.75) scales. They also effectively captured the GI gradients at site scale (r = 0.94). Our study proposed a monitoring approach and presented annual 10-m grazing information maps for sustainable grassland management.

6.
Microbiol Spectr ; 11(6): e0222823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37947518

RESUMEN

IMPORTANCE: Ensiled whole-plant oats are an important feedstuff for ruminants in large parts of the world. Oat silage is rich in dietary fibers, minerals, vitamins, and phytochemicals beneficial to animal health. The fermentation of oat silage is a complex biochemical process that includes interactions between various microorganisms. The activity of many microbes in silage may cause an extensive breakdown of nutrition and lead to undesirable fermentation. Moreover, it is difficult to make high-quality oat silage because the number of epiphytic lactic acid bacterium microflora was lower than the requirement. Understanding the complex microbial community during the fermentation process and its relationship with community functions is therefore important in the context of developing improved fermentation biotechnology systems. These results suggested that the addition of Lactobacillus plantarum or Lactobacillus buchneri regulated the ensiling performance and microbial community in oat silage by shaping the metabolic pathways.


Asunto(s)
Avena , Microbiota , Animales , Ensilaje/análisis , Ensilaje/microbiología , Lactobacillus/metabolismo , Fermentación
7.
Front Plant Sci ; 14: 1230725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854116

RESUMEN

Seed banks are crucial regenerative resources for aboveground vegetation. The pattern of their changes holds immense significance in understanding alterations in the belowground seed bank. This understanding is pivotal for uncovering both short-term and long-term shifts in plant communities. Additionally, it contributes to the restoration of grassland ecosystems. To better protect grassland biodiversity and provide a theoretical basis for the restoration of degraded grasslands, in this study, the germination characteristics of soil seed banks in free-grazed, enclosed and mown areas were compared, and the results were combined with those of previous studies for a comprehensive analysis. The density of soil seed bank and perennial forage soil seed bank were significantly affected by different grassland utilization and soil depths. Grazing and enclosure grassland utilization methods increased the content of the soil seed bank, and mowing reduced the content of the seed bank. The soil seed bank density of perennial grasses accounted for the highest proportion under grazing, followed by mowing, and its lowest proportion was observed in the enclosures. Grazing not only facilitated the germination of the perennial grass seed bank but also substantially augmented its content. Mowing inhibited the germination of the upper growth grasses seed bank, which was particularly significant in the 0-2 cm soil layer under grazing. The content of the upper growth grasses seed bank affected the total seed bank to a certain extent, mainly in the 5-10 cm layer. The general correlations among the perennial grasses, upper growth grasses and soil germination seed bank resulted in 84.58% information extraction, and this information has practical significance for grassland ecological restoration.

8.
NanoImpact ; 31: 100480, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37625671

RESUMEN

A significant bottleneck of current agricultural systems remains the very low agronomic efficiency of conventional agrochemicals, particularly in sandy soils. Carbon nanomaterials (CNMs) have been proposed to address this inefficiency in sandy soils, which could potentially improve soil fertility and enhance crop growth and physiological processes. However, the effects of different rates of CNMs on crop physiological and soil biochemical quality in sandy soils must be compared to other carbon sources (e.g., biochar) before CNMs can be broadly used. To address this, a 70-day pot experiment was set up, growing lettuce under ten treatments: a negative control with no CNMs, biochar or fertilizer; a fertilizer-only control; three CNMs-only unfertilized treatments (CNMs at 200, 400 and 800 mg kg-1 soil); two biochar treatments with fertilizer (biochar at 0.5% and 1% by soil mass + fertilizer); and three CNMs treatments with fertilizer (CNMs at 200, 400 and 800 mg kg-1 soil + fertilizer). A novel amorphous, water-dispersible, and carboxyl-functionalized CNMs with pH of 5.5, zeta potential of -40.6 mV and primary particle diameter of 30-60 nm was used for this experiment. Compared to the fertilizer-only control, CNMs applied at low to medium levels (200-400 mg kg-1) significantly increased lettuce shoot biomass (20-21%), total chlorophyll (23-27%), and fluorescence and photosynthetic activities (4-10%), which was associated with greater soil nutrient availability (N: 24-58%, K: 68-111%) and higher leaf tissue accumulation (N: 25-27%; K: 66%). Low to medium levels of CNMs also significantly increased soil biochemical properties, such as higher soil microbial biomass carbon (27-29%) and urease enzyme activity (34-44%) relative to fertilizer-only applications. In contrast, biochar (0.5%) increased lettuce biomass relative to fertilizer-only but had no significant effect on soil fertility and biological properties. These results suggest that CNMs at low to medium application rates are a superior carbon-based amendment relative to biochar in sandy soils.


Asunto(s)
Carbono , Nanoestructuras , Suelo , Arena , Lactuca , Fertilizantes
9.
Sci Total Environ ; 889: 164191, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201816

RESUMEN

Livestock-grassland interactions are among the most important relationships in grazed grassland ecosystems, where herbivores play a crucial role in plant community and ecosystem functions. However, previous studies primarily have focused on the responses of grasslands to grazing, with few focussing on the effects of livestock behaviour that in turn would influence livestock intake and primary and secondary productivity. Through a 2-year grazing intensity experiment with cattle in Eurasian steppe ecosystem, global positioning system (GPS) collars were used to monitor animal movements, where animal locations were recorded at 10-min intervals during the growing season. We used a random forest model and the K-means method to classify animal behaviour and quantified the spatiotemporal movements of the animals. Grazing intensity appeared to be the predominant driver for cattle behaviour. Foraging time, distance travelled, and utilization area ratio (UAR) all increased with grazing intensity. The distance travelled was positively correlated with foraging time, yielding a decreased daily liveweight gain (LWG) except at light grazing. Cattle UAR showed a seasonal pattern and reached the maximum value in August. In addition, the canopy height, above-ground biomass, carbon content, crude protein, and energy content of plants all affected cattle behaviour. Grazing intensity and the resulting change in above-ground biomass and forage quality jointly determined the spatiotemporal characteristics of livestock behaviour. Increased grazing intensity limited forage resources and promoted intraspecific competition of livestock, which induced longer travelling distance and foraging time, and more even spatial distribution when seeking habitat, which ultimately led to a reduction in LWG. In contrast, under light grazing where there were sufficient forage resources, livestock exhibited higher LWG with less foraging time, shorter travelling distance, and more specialized habitat occupation. These findings support the Optimal Foraging Theory and the Ideal Free Distribution model, which may have important implications for grassland ecosystem management and sustainability.


Asunto(s)
Ecosistema , Pradera , Animales , Bovinos , Herbivoria/fisiología , Biomasa , Plantas , Ganado
10.
J Environ Manage ; 332: 117379, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724598

RESUMEN

Accurate baseflow estimation is critical for water resources evaluation and management, and non-point source pollution quantification. Nonlinear reservoir algorithm (NRA) has been increasingly applied to baseflow separation because of its good approximation to the real groundwater discharge (commonly dominated by the unconfined aquifer) in most watersheds. However, in the rainy regions, large uncertainties may remain in the traditional NRA-separated baseflow sequences due to its empirical transition function for the rising limb of discharge process, and the evident variations of baseflow recession in the initial period of the falling limb caused by the disturbance from surface flow or rainfall events. To improve the reliability of baseflow separation, a self-adaptive non-linear reservoir algorithm (SA-NRA) was developed in this study based on the NRA, a self-adaptive groundwater discharge modified parameter, and the Particle Swarm Optimization algorithm (PSO). The validation of SA-NRA in a rainy watershed of eastern China showed that SA-NRA could be the approach to provide a goodness-of-fit for baseflow recession behaviors in the rainy regions. The traditional NRA and Eckhardt's two-parameter recursive digital filter (ERDF), calibrated (or validated) only with the pure baseflow recession data, can hardly provide reliable baseflow predictions for the non-pure baseflow recession periods (including the rising limb and the falling limb with surface flow or rainfall disturbance) due to the apparent variations of baseflow recession behavior. Therefore, more attentions should be paid to the uncertainties of baseflow separation for the non-pure baseflow recession periods in the rainy regions.


Asunto(s)
Monitoreo del Ambiente , Movimientos del Agua , Reproducibilidad de los Resultados , Algoritmos , China , Ríos
11.
Food Chem ; 402: 134290, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36148764

RESUMEN

Sustainable strategies are essential for zinc (Zn) biofortification and cadmium (Cd) reduction in staple food crops. Herein, we evaluated the phytotoxicity of Glyzinc under foliar and root application (FA&RA) in a lab-scale experiment, and then investigated its Zn efficiency and Cd reduction through foliar application on wheat (Triticum aestivum L.) under field conditions. Compared to RA, FA of Glyzinc exhibited no adverse effect on wheat growth and oxidative stresses at all doses. In field conditions, FA of Glyzinc remarkably increased Zn (28.7 %), S (10.4 %), Cu (17.3 %) and crude protein (9.1 %) content in wheat grain at 100 mg/L without damaging wheat yield. Furthermore, FA of Glyzinc significantly reduced the grain phytic acid (PA) (23.7 %) and Cd level (19.5 %), as well as PA to Zn molar ratio (32.3 %). Overall, our results indicate that Glyzinc has great potential as a high-efficiency foliar fertilizer for Zn biofortification and safe crop production in nano-enabled agriculture.


Asunto(s)
Contaminantes del Suelo , Triticum , Triticum/metabolismo , Fertilizantes , Zinc/análisis , Cadmio/análisis , Biofortificación , Contaminantes del Suelo/análisis , Suelo , Ácido Fítico/metabolismo , Grano Comestible/química
12.
Front Plant Sci ; 13: 1019966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479515

RESUMEN

Introduction: Grasslands are the most important land use in China and have experienced extensive degradation in the past few decades due to overgrazing. However, regionally viable solutions to grazing intensity alleviation remained elusive to date. Methods: Here, we evaluated the grazing intensity effects of sown alfalfa pastures in northern China using an experiment-modeling combined approach that involved six sites in field experiments and five provinces in DNDC modeling of sown alfalfa pasture's forage production and carbon sequestration potentials in marginal lands. Results: Our results showed that the sown alfalfa pasture's dry-matter yield varied between 4.5 and 9.0 Mg ha-1 under rainfed and irrigated conditions, respectively, from 2025 to 2035. If half of the available marginal lands were mobilized for alfalfa forage production, these yield levels meant that livestock grazing intensity on natural grasslands may drop 8-13% under rainfed and 20-33% under irrigated conditions. Our results also showed that marginal land's soil organic carbon contents were systematically higher under sown alfalfa pasture than under fallow management by a big margin of 8.5 and 9.9 g kg-1 (i.e., +79 and +95%), under rainfed and irrigated conditions, respectively, during 2025-2035. Discussion: Overall, these results demonstrated that sown alfalfa pasture on marginal lands represents an effective grassland conservation pathway over the short- to medium-term time horizon based on current technologies.

13.
Animals (Basel) ; 12(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077948

RESUMEN

Chinese traditional herbs are used widely as feed supplements to improve the immune response and antioxidant capacity of livestock. Twenty early-weaned 4-month-old yak calves (72.3 ± 3.65 kg) were divided randomly into four groups (n = 5 per group); three groups were provided with supplementary 80 mL/kg DMI of the root water extracts of either Angelica sinensis, Codonopsis pilosula or Glycyrrhiza uralensis, and one group (control) was not provided with a supplement. Compared to control calves, calves consuming the three herbal extracts increased serum concentrations of albumin (ALB) and glutathione peroxidase (GSH-Px), but decreased serum concentrations of free fatty acids (FFAs) and malondialdehyde (MDA) (p < 0.05). Calves consuming A. sinensis decreased (p < 0.05) serum concentration of total cholesterol (TC), and increased (p < 0.05) serum concentration of total proteins (TP). Serum FFA concentrations increased (p = 0.004) linearly with time in the control group, but not in the groups consuming herbs. Serum metabolomic data demonstrated that A. sinensis and C. pilosula regulate mainly amino acid metabolism, while G. uralensis regulates mainly carbon and amino acid metabolism. It was concluded that the three herbal root extracts, as dietary supplements, improved energy and nitrogen metabolism, and enhanced the antioxidant capacity of yak calves.

14.
Sci Total Environ ; 853: 158610, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089030

RESUMEN

The heat waves (HW) will be more frequent and intense in the future with increased human activity and uncertain implications for ecosystem carbon fluxes. The semi-arid Eurasian grassland is sensitive to climate change and under frequent HWs attacks. Mowing as one of the most common human practices in this region, combining with HW can have comprehensive effects on plant communities, biomass, and nutrient cycling. Hence, a 3-year (2019-2021) field manipulation experiment was conducted to assess how mowing influenced the carbon cycling under HWs, and the interactions between HWs and mowing on carbon fluxes at the community and ecosystem levels in a Eurasian meadow steppe. Over the three years, HW significantly reduced net ecosystem CO2 exchange (NEE) and gross ecosystem production (GEP) by 28 % and 8 % (P < 0.05), respectively, whereas ecosystem respiration (Re) did not show significant changes. Moderate mowing (stubble height was set at 6-8 cm) for harvest effectively mitigated ecosystem sensitivity to HWs and significantly increased ecosystem carbon fluxes (NEE, Re, and GEP), biomass and the number of species. Mowing reduced the negative impact of HWs on ecosystem carbon fluxes by about 15 % compared to HWs alone, contributing to the invasion of species such as Thalictrum squarrosum and Vicia amoena, and increased the indirect effect of HW on NEE in the structural equation model. In addition, the higher soil water content (SWC) was another effective way to reduce the impact of HWs. Therefore, mowing and higher SWC would be effective ways to counteract the negative effects of HWs on carbon fluxes in future grassland management.


Asunto(s)
Ecosistema , Pradera , Humanos , Dióxido de Carbono/química , Calor , Ciclo del Carbono , Suelo , Agua/química , Carbono/química
15.
Environ Res ; 214(Pt 4): 113976, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35998697

RESUMEN

Vegetation patterns play an important role in precipitation partitioning into hydrological components, especially evapotranspiration and runoff. However, few studies focus on their competitive relationship and the influence of the vegetation on them. In this study, a vegetation threshold was postulated to prevent further decrease of runoff by determining a new hydrological component continuing evapotranspiration (partitioned from total and initial evapotranspiration) through a novel model coupled with the Budyko model (dimensional form) and two-stage partitioning model (nondimensional form) in the semi-arid watershed. The results showed significant correlations between model parameters ε (underlying surface index), λ (ratio of initial evapotranspiration) and vegetation coverage (M) (R2 = 0.95 and 0.97, p < 0.01) b Based on the modified Budyko model and λ. The nondimensional model showed high-precise estimations of KH (Horton index Fraction), KB (Baseflow Fraction), KV (evapotranspiration Fraction), KR (runoff Fraction), and KC (continuing evapotranspiration Fraction) (R2 > 0.98, p < 0.01) as a function of a new aridity index φ. KH, KB, KV, KR, showed symmetrical patterns correlated with φ both at between-subwatershed and between-year scale based on the dimensional model and λ. However, KC showed asymmetrical different correlation with M3 and φ (KC/M3 ∼ φ: in between-subwatershed: R2 = 0.92, p < 0.01; and between-year scale: R2 = 0.74, p < 0.01). Based on the solution of continuing evapotranspiration, the vegetation threshold has been solved with M = 0.73 (+0.09/-0.02) to prevent further decreasing runoff. The framework presented can be applied in other semi-arid watersheds worldwide to better protect the sustainability of the hydro-ecosystems.


Asunto(s)
Ecosistema , Hidrología , Agua
16.
Sci Total Environ ; 851(Pt 1): 158130, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995168

RESUMEN

The imbalance of terrestrial carbon (C) inputs versus losses to extreme precipitation can have consequences for ecosystem carbon balances. However, the current understanding of how ecosystem processes will respond to predicted extreme dry and wet years is limited. The current study was conducted for three years field experiment to examine the effects of environmental variables and soil microbes on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) under extreme wet and dry conditions in mowed and unmowed grassland of Inner Mongolia. Across treatments (i.e. control, dry spring, wet spring, dry summer and wet summer), the mean of Rs was increased by 24.9 % and 24.1 % in the wet spring and wet summer precipitation treatments, respectively in mowed grassland. In other hand, the mean of Rs was decreased by -22.1 % and -3.5 % in dry spring and dry summer precipitation treatments, respectively in mowed grassland. The relative contribution of Rh and Ra to Rs showed a significant (p < 0.05) change among simulated precipitation treatments with the highest value (76.18 %) in wet summer and 26.41 % in dry summer, respectively under mowed grassland. Rs was significantly (p < 0.05) affected by the interactive effect of extreme precipitation and mowing treatments in 2020 and 2021. The effects of precipitation change via these biotic and abiotic factors explained by 52 % and 81 % in Ra and Rh, respectively in mowed grassland. The changes in microbial biomass carbon (MBC) and nitrogen (MBN) had significant (p < 0.05) direct effects on Rh in both mowed and unmowed grasslands. The influence of biotic and abiotic factors on Rs was stronger in mowed grasslands with higher standardized regression weights than in unmowed grassland (0.78 vs. 0.69). These findings highlight the importance of incorporating extreme precipitation events and mowing in regulating the responses of C cycling to global change in the semiarid Eurasian meadow steppe.


Asunto(s)
Pradera , Suelo , Carbono , Ecosistema , Nitrógeno/análisis , Respiración
17.
Plant Dis ; 106(12): 3040-3049, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35596246

RESUMEN

A serious rust infection present in 2014 and 2015 on the dominant grass species (Leymus chinensis) in the Hulunber grassland of Inner Mongolia, China, and also present on three other grass species (Agropyron cristatum [wheat grass], Bromus inermis, and Festuca ovina) was investigated. Field surveys, laboratory determination of morphological characteristics, pathogenicity tests, and molecular identification methods were integrated to identify two rust-causing pathogens on L. chinensis. It was found that Puccinia elymi was the major pathogen of L. chinensis, and also infected A. cristatum and F. ovina. This is the first report of P. elymi on A. cristatum in China. P. striiformis caused stripe rust on L. chinensis and B. inermis. The incidence and severity of rust infection increased through the growing season, presumably from asexual spread by urediniospores, and was higher on grass species phylogenetically more closely related to common crop hosts of the pathogens. High host grass density and presence of a potential alternate host for P. elymi, Thalictrum squarrosum, were two further factors promoting rust incidence. These results provide insight into ecological factors linked to the rust epidemic and provide a theoretical basis for the formulation of control strategies.


Asunto(s)
Basidiomycota , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Pradera , Basidiomycota/genética , Virulencia
18.
NanoImpact ; 25: 100381, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559887

RESUMEN

Copper (Cu) stress is one of the predominant crop yield-reducing factors in agriculture. Application of carbon nanomaterials (CNMs) could have promotive effects on crop growth; however, their effects on alleviation of Cu stress for plants have rarely been documented. In this study, we investigated the comparative role of carbon nanotubes (CNTs) and carbon nanoparticles (CNPs) in corn (Zea mays) seed germination, seedling growth as well as Cu stress alleviation. The results showed that CNTs and CNPs stimulated corn seed germination by significantly increasing germination rate (GR), shortening the mean germination time (MGT), and increasing overall germination index (GI). They also significantly elongated seedling length and increased fresh biomass with optimal application rates ranging from 50 to 100 mg L-1. Principle component analysis (PCA) confirmed that seed germination indexes and seedling growth were positively affected by CNTs or CNPs, but inversely influenced by high levels of Cu stress (> 20 mg L-1). Furthermore, higher Cu accumulation and anti-oxidative enzyme activity (SOD, POD, CAT) were observed in plants co-exposed to Cu2+ and either CNTs or CNPs compared to plants exposed to Cu2+ alone. CNPs had stronger improvement on plant growth and Cu stress alleviation than CNTs, which suggest they may be cost-effective agriculture amendments to improve plant growth under heavy metal stress.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Cobre/farmacología , Germinación , Nanotubos de Carbono/toxicidad , Plantas , Plantones , Zea mays
19.
Sci Total Environ ; 803: 149700, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487901

RESUMEN

The Eurasian steppe is the largest steppe region in the world and is an important part of the global grassland ecosystem. The eastern Eurasian steppe has favorable hydrothermal conditions and has the highest productivity and the richest biodiversity. Located in the arid and semi-arid region, the eastern Eurasian steppe has experienced large-scale grassland degradation due to dramatic climate change and intensive human activities during the past 20 years. Hence, accurate estimation of aboveground biomass (AGB, gC m-2) and belowground biomass (BGB, gC m-2) is necessary. In this study, plenty of AGB and BGB in-situ measurements were collected among dominated grassland types during summer in 2013 and 2016-2018 in the eastern Eurasian steppe. Vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS), Digital Elevation Model (DEM) and climate variables were chosen as independent variables to establish predictive models for AGB and BGB with random forest (RF). Both AGB (R2 = 0.47, MAE = 21.06 gC m-2, and RMSE = 27.52 gC m-2) and BGB (R2 = 0.44, MAE = 173.02 gC m-2, and RMSE = 244.20 gC m-2) models showed acceptable accuracy. Then the RF models were applied to generate spatially explicit AGB and BGB estimates for the study area over the last two decades (2000-2018). Both AGB and BGB showed higher values in the Greater Khingan Mountains and decreased gradually to the east and west sides. The mean values for AGB and BGB were 62.16 gC m-2 and 531.35 gC m-2, respectively. The climatic factors were much more important in controlling biomass than anthropogenic drivers, and shortage of water and raising temperature were the main limiting factor of AGB and BGB, respectively, in the peak growth season. These findings provide scientific data for the scientific management of animal husbandry and can contribute to the sustainable development of grassland ecology in the eastern Eurasian steppe.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Pradera , Humanos , Imágenes Satelitales , Temperatura
20.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685156

RESUMEN

The use of carbon nanoparticles (CNPs) as a fertilizer synergist to enhance crop growth has attracted increasing interest. However, current understanding about plant growth and soil response to CNPs is limited. In the present study, we investigated the effects of CNPs at different application rates on soil properties, the plant growth and nutrient use efficiency (NUE) of corn (Zea mays L.) in two agricultural soils (Spodosol and Alfisol). The results showed that CNPs affected corn growth in a dose-dependent manner, augmenting and retarding growth at low and at high concentrations, respectively. The amendment at the optimal rate of 200 mg CNPs kg-1 significantly enhanced corn growth as indicated by improved plant height, biomass yield, nutrient uptake and nutrient use efficiency, which could be explained by the higher availability of phosphorus and nitrogen in the amended soils. The application of CNPs largely stimulated soil urease activity irrespectively of soil types. However, the responses of dehydrogenase and phosphatase to CNPs were dose dependent; their activity significantly increased with the increasing application rates of CNPs up to 200 mg kg-1 but declined at higher rates (>400 mg kg-1). These findings have important implications in the field application of CNPs for enhancing nutrient use efficiency and crop production in tropical/subtropical regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...