Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(13): 20621-20636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38381294

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) in soil are potentially harmful to human health. However, the use of photocatalysis technology to treat soil contaminated with PAHs remains challenging. Therefore, TiO2/α-FeOOH composite photocatalyst has been synthesized by hydrothermal method and sol-gel method and applied to photocatalytic degradation of fluoranthene in soil. The morphology, elements, crystal structure, optical properties, electrochemical characteristics, and photocatalytic activity of TiO2/α-FeOOH have been characterized. Results showed that TiO2 is tightly fixed on the surface of α-FeOOH, and TiO2/α-FeOOH had higher photocatalytic activity on photocatalytic degradation of fluoranthene in soil under simulated sunlight. The degradation efficiency of TiO2/α-FeOOH is 3.0 and 4.8 times higher than that of TiO2 and α-FeOOH, respectively. This is attributed to enhanced photocatalytic ability by enhancing the transfer capacity of electrons and holes and broadening the spectrum absorption range. The highest degradation efficiency was achieved when the pH of the soil is neutral, the ratio of water/soil is 10:1, and the dosage of catalyst is 50 mg/g. In addition, it was proved that •O2-, h+, and 1O2 are the main active substances in the photocatalysis of TiO2/α-FeOOH. The possible mechanism of a Z-type electron transfer structure was also proposed. The degradation products of fluoranthene were detected, and the degradation pathway was deduced.


Asunto(s)
Compuestos de Hierro , Minerales , Hidrocarburos Policíclicos Aromáticos , Suelo , Humanos , Fluorenos , Luz Solar
2.
Waste Manag ; 175: 245-253, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219462

RESUMEN

Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.


Asunto(s)
Antibacterianos , Gentamicinas , Humanos , Gentamicinas/farmacología , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Nutrientes , Micelio/metabolismo , Genes Bacterianos
3.
Chemosphere ; 349: 140960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104734

RESUMEN

Activated carbon enriched with high concentrations of gentamicin (ACG) was generated in the production process of gentamicin. Inappropriate handling methods for ACG not only squanders carbon resource, but also seriously hinders achieving global carbon neutrality and hazardous to human health. In the present work, thermal and carbon co-activated persulfate method (TC-PS) was developed to regenerate ACG with degrading gentamicin. The results showed that ACG was effectively regenerated by TC-PS, restoring the adsorption performance for gentamicin. When the treatment temperature was 80 °C, the persulfate dosage was 20 mM and the initial pH was 3.0, the degradation efficiency of gentamicin reached 100%. The HO• and SO4•- were the major reactive species for gentamicin degradation. The possible degradation routes of gentamicin were proposed and the safety assessment indicated that the produced intermediates during the regeneration process of ACG by TC-PS have insignificant impact on the biological and ecological environment.


Asunto(s)
Calor , Contaminantes Químicos del Agua , Humanos , Sulfatos , Carbón Orgánico , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción
4.
J Colloid Interface Sci ; 658: 286-300, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38109816

RESUMEN

The self-sufficient heterogeneous photo-Fenton (SH-PF) system was constructed for doxycycline hydrochloride (DOH) degradation with hydroxyapatite (Hap) modified CuFeO2 (Hap/CuFeO2) composites through H2O2 in-situ production. The modification of Hap could improve the specific surface area, visible-light response, light conversion efficiency, photoelectron lifetime and oxygen vacancies (OVs) of CuFeO2, which was conducive to H2O2 production and DOH degradation in SH-PF system. Notably, Hap/CuFeO2 fabricated with 0.5 g Hap (Hap/CuFeO2-0.5) displayed more superior performance for DOH degradation compared to other synthesized catalysts. The Hap/CuFeO2-0.5 load and initial solution pH for DOH degradation in SH-PF system were optimized, and the Hap/CuFeO2-0.5 had good reusability and stability. The •OH was the main active species for DOH degradation, and the facilitation effect of •O2- and photoelectrons on DOH degradation was associated with the H2O2 production in the present work. In addition, the capture of photogenerated holes suppressed the recombination of photogenerated carriers, elevating the production of photoelectrons and thereby enhancing H2O2 production and DOH degradation. The degradation pathways for DOH were proposed and the comprehensive toxicities of DOH were relieved after degradation in SH-PF system.

5.
Environ Sci Technol ; 57(49): 20708-20717, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38032314

RESUMEN

Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.


Asunto(s)
Amoníaco , Óxidos , Temperatura , Oxidación-Reducción , Catálisis
6.
Huan Jing Ke Xue ; 44(9): 5222-5230, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699840

RESUMEN

CuFeO2-modified biochars were prepared through co-precipitation and hydrothermal methods, and the composites had high efficiency removal for tetracycline (TC) from water. The CuFeO2-modified biochar with a 2:1 mass ratio of CuFeO2 to BC450 (CuFeO2/BC450=2:1) demonstrated the best adsorption performance. The kinetic process of TC adsorption by CuFeO2/BC450=2:1 was well fitted with the intraparticle diffusion model, suggesting that the adsorption process was controlled by film and pore diffusion. Under the condition of neutral pH and 298 K, the maximum adsorption capacity of the Langmuir model of CuFeO2/BC450=2:1 was 82.8 mg·g-1, which was much greater than that of BC450 (13.7 mg·g-1) and CuFeO2(14.8 mg·g-1). The thermodynamic data suggested that TC sorption onto CuFeO2/BC450=2:1 was a spontaneous and endothermic process. The removal of TC by CuFeO2/BC450=2:1 increased first and then decreased with increasing pH, and the maximum adsorption occurred under the neutral condition. The strong adsorption of TC by CuFeO2/BC450=2:1 could be attributed to better porosity, larger specific surface area, and more active sites (e.g., functional groups and charged surfaces). This work provided an efficient magnetic adsorbent for removing antibiotics.


Asunto(s)
Antibacterianos , Tetraciclina , Adsorción , Termodinámica
7.
J Hazard Mater ; 459: 132199, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541123

RESUMEN

Activated peroxymonosulfate (PMS) processes have emerged as an efficient advanced oxidation process to eliminate refractory organic pollutants in water. This study synthesized a novel spherical manganese oxide catalyst (0.4KBr-ß-MnO2) via a simple KBr-guided approach to activate PMS for degrading dimethyl phthalate (DMP). The 0.4KBr-ß-MnO2/PMS system enhanced DMP degradation under different water quality conditions, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine ß-MnO2 by 8.5 times. Mn(V) was the dominant reactive species that was revealed by the generation of methyl phenyl sulfone from methyl phenyl sulfoxide oxidation. The selectivity of Mn(V) was demonstrated by the negligible inhibitory effects of Inorganic anions. Theoretical calculations confirmed that Mn (V) was more prone to attack the CO bond of the side chain of DMP. This study revealed the indispensable roles of high-valent manganese species in DMP degradation by the 0.4KBr-ß-MnO2/PMS system. The findings could provide insight into effective PMS activation by Mn-based catalysts to efficiently degrade pollutants in water via the high-valent manganese species.

8.
Bioresour Technol ; 385: 129380, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37356503

RESUMEN

Nano Y2O3-modified biochar composites (Y2O3@BC600) were fabricated successfully and exhibited great adsorption toward oxytetracycline (OTC). The Langmuir adsorption capacity of Y2O3@BC600-1:4 for OTC reached 223.46 mg/g, 10.52 times greater than that of BC600. The higher dispersion of Y2O3 nanoparticles, increased surface area of 175.65 m2/g and expanded porosity of 0.27 cm3/g accounted for higher OTC adsorption by Y2O3@BC600-1:4. Y2O3@BC600-1:4 could resist the interference of co-existing cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, NO3-, SO42-) on OTC removal. Y2O3 coating changed surface charge property of BC600, favoring the contribution of electrostatic interaction. Synchrotron radiation-based Fourier transform infrared spectroscopy detected obvious peak shift and intensity change of surface -OH when OTC adsorption occurred. Accordingly, stronger H-bonding (charge-assisted hydrogen bond, OTC-H2N+···HO-Y2O3@BC600-1:4) was proposed for OTC adsorption. Y2O3@BC600 exhibited renewability and stability in the adsorptive removal of OTC. Therefore, Y2O3@BC600 may be a novel and suitable adsorbent for antibiotic removal.


Asunto(s)
Nanocompuestos , Oxitetraciclina , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Cationes , Contaminantes Químicos del Agua/química , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
9.
Chemosphere ; 336: 139201, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37348618

RESUMEN

The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.


Asunto(s)
Oxitetraciclina , Oxitetraciclina/química , Fermentación , Peróxido de Hidrógeno/química , Antibacterianos/farmacología , Oxidación-Reducción
10.
Environ Sci Pollut Res Int ; 30(27): 70260-70276, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37147542

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) in soil have potential harm on human health. However, remediation of PAH-contaminated soils through photocatalytic technology remains a challenge. Therefore, the photocatalyst g-C3N4/α-Fe2O3 was synthesized and applied to photocatalytic degradation of fluoranthene in soil. The physicochemical properties of g-C3N4/α-Fe2O3 and various degradation parameters, such as catalyst dosage, the ratio of water/soil, and initial pH, were investigated in detail. In soil slurry reaction system (water/soil=10:1, w/w), the optimal degradation efficiency on fluoranthene was 88.7% after simulated sunlight irradiation for 12 h (contaminated soil=2 g, initial fluoranthene concentration=36 mg/kg, catalyst dosage=5%, and pH=6.8), and the photocatalytic degradation followed pseudo-first-order kinetics. The degradation efficiency of g-C3N4/α-Fe2O3 was higher compared with P25. Degradation mechanism analysis showed that •O2- and h+ are the main active species in photocatalytic degradation process of fluoranthene by g-C3N4/α-Fe2O3. Coupling g-C3N4 and α-Fe2O3 enhances the interfacial charge transport capacity via Z-scheme charge transfer route and inhibits the recombination of photogenerated electrons and holes of g-C3N4 and α-Fe2O3, then significantly improves the production of active species and photocatalytic activity. Results showed that photocatalytic treatment of soil by g-C3N4/α-Fe2O3 is an effective strategy for remediation of soils contaminated by PAHs.


Asunto(s)
Luz Solar , Humanos , Catálisis
11.
J Hazard Mater ; 451: 130901, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36881985

RESUMEN

The sulfate radical-based advanced oxidation processes (SR-AOPs) offer huge potential for the removal of organic pollutants. In this study, Co(II)-intercalated δ-MnO2 (Co-δ-MnO2) catalyst was successfully prepared by a simple cation exchange reaction. The obtained Co-δ-MnO2 exhibited high catalytic performance for the removal of dimethyl phthalate (DMP) under the activation of peroxymonosulfate (PMS), with the degradation efficiency reaching 100% within 6 h. Experiments and theoretical calculations revealed that interlayer Co(II) provided unique active sites in Co-δ-MnO2. In addition, radical and non-radical pathways were confirmed to play a role in Co-δ-MnO2/PMS system. •OH, SO4• ̶, and 1O2 were identified to be the dominating reactive species in Co-δ-MnO2/PMS system. This study provided new insights into the design of catalysts and laid a foundation for developing modifiable layered heterogeneous catalysts.

12.
J Environ Manage ; 321: 115971, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104883

RESUMEN

The activated peroxymonosulfate (PMS) process has been widely applied for degrading organic pollutants. However, its application is limited by low metal cycling, and the contribution of oxygen species remains unclear. Here, the crystal structure, surface morphology, and elemental valence of the synthesized manganese ferrite (MnFe2O4) catalyst were investigated by SEM, HRTEM, XRD, and XPS. A novel MnFe2O4/PMS/ascorbic acid (AA) system was constructed to enhance the Fe/Mn cycling on the surfaces of the MnFe2O4 catalyst. The addition of AA can significantly increase the decomposition of organic pollutants, and the apparent rate constant of the MnFe2O4/PMS/AA system is 8.2 times higher than that of MnFe2O4/PMS. AA facilitates the reduction of Fe/Mn(III) and the dissolution of Fe/Mn(II), creating a Fe/Mn cycle between the heterogeneous and homogeneous interfaces of the catalyst. Furthermore, AA greatly increases the activity of adsorbed oxygen on the catalyst surfaces, generating a large amount of singlet oxygen (1O2), which contributes significantly to the destruction of organic pollutants. The efficient, fast, and environmentally friendly PMS activation method in this study can provide reliable technical support for treating refractory organic pollutants in water.


Asunto(s)
Contaminantes Ambientales , Oxígeno Singlete , Ácido Ascórbico , Oxígeno , Peróxidos
13.
J Colloid Interface Sci ; 626: 629-638, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810702

RESUMEN

Catalytic activity is the main obstacle limiting the application of peroxymonosulfate (PMS) activation on transition metal oxide catalysts in organic pollutant removal. Herein, ultrasonic treatment was applied to α-MnO2 to fabricate a new u-α-MnO2 catalyst for PMS activation. Dimethyl phthalate (DMP, 10 mg/L) was almost completely degraded within 90 min, and the pseudofirst-order rate constant for DMP degradation in the u-α-MnO2/PMS system was ∼7 times that in the initial α-MnO2/PMS system. The ultrasonic treatment altered the crystalline and pore structures of α-MnO2 and produced defects on the u-α-MnO2 catalyst. According to the XPS, TG, and EPR results, higher contents of trivalent Mn and oxygen vacancies (OVs) were produced on the catalyst surfaces. The OVs induced the decomposition of PMS to produce 1O2, which was identified as the main reactive oxygen species (ROS) responsible for DMP degradation. The u-α-MnO2 catalyst presented great reusability, especially by ultrasonic regeneration of OVs toward the used catalyst. This study provides new insights into regulating OVs generation and strengthening catalyst activity in the PMS activation process for its application in water purification.


Asunto(s)
Compuestos de Manganeso , Manganeso , Compuestos de Manganeso/química , Óxidos/química , Oxígeno , Peróxidos/química , Ultrasonido
15.
J Environ Manage ; 308: 114615, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131709

RESUMEN

The dual-chamber photoelectrocatalytic (PEC) system possess advantages in the degradation efficiency and processing cost of organic contaminants. In this study, TiO2 nanotube arrays modified by rGO and g-C3N4 (rGO/g-C3N4/TNAs) photoelectrodes were successfully prepared. The surface micromorphology, chemical structure, crystal structure, and basic element composition of rGO/g-C3N4/TNAs photoelectrodes were studied by SEM, FTIR, XRD, Raman, and XPS. UV-vis absorption, photoluminescence (PL) spectra, and photoelectrochemical (PECH) tests were used to explore the photoelectrochemical characteristics of rGO/g-C3N4/TNAs photoelectrodes. Under simulated sunlight illumination, the dual-chamber PEC system with external bias voltage was used to investigate the degradation of oxytetracycline (OTC) on rGO/g-C3N4/TNAs photoelectrodes. The results showed that rGO and g-C3N4 were successfully loaded on TNAs, and the separation efficiency of electrons and holes at rGO/g-C3N4/TNAs photoelectrodes was improved. The light absorption range of rGO/g-C3N4/TNAs photoelectrodes extends to the visible light region and has better light absorption performance. Compared with the photocatalytic process, when 1.2 V bias voltage was applied, the degradation efficiency of OTC in anode and cathode chambers in PEC were increased by 3.28% and 44.01% within 60 min, respectively. In addition, the anode and cathode chambers have different degradation effects on OTC. Both the external bias voltage and initial pH have significant effects in cathode chamber, but have little effect in photoanode chamber. The fluorescence excitation-emission matrix spectra and liquid chromatography-tandem mass spectrometry showed that there were different intermediates in the degradation process of OTC. This study indicated that for the dual-chamber PEC system, rGO/g-C3N4/TNAs photoelectrodes exhibited excellent photocatalytic performance and have potential application prospects in water environmental remediation.


Asunto(s)
Grafito , Oxitetraciclina , Catálisis , Galvanoplastia , Grafito/química
16.
Sci Total Environ ; 821: 153229, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051483

RESUMEN

Rifamycin mycelial dreg (RMD) is a biological waste, and its residual rifamycin (RIF) is potentially harmful to both the environment and human health. In this work, thermally activated persulfate (PDS) oxidative degradation of RIF in RMD was developed for the first time. The effects of reaction temperature, initial PDS concentration, and pH on RIF degradation in RMD were investigated, and the treatment conditions were optimized using response surface methodology (RSM). The results showed that 90 °C, 50 mg/g PDS, and pH = 5.3 were the optimal pretreatment conditions, and 100% degradation efficiency of RIF (734 mg/kg) was achieved. SEM and FTIR analyses confirmed that the RIF was destroyed and decomposed after the oxidation reaction. The possible degradation pathways of RIF in the thermally activated PDS system were discussed through HPLC/MS and ESR analyses. The intermediate product was identified, and the toxicity of the final product was predicted to be low or nontoxic. In this work, a degradation pathway of RMD was proposed by activating persulfate, which facilitates subsequent resource utilization and provides meaningful guidance for the practical treatment of antibiotic mycelium residue (AMR).


Asunto(s)
Rifamicinas , Contaminantes Químicos del Agua , Humanos , Cinética , Micelio , Oxidación-Reducción , Rifamicinas/análisis , Sulfatos/química , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 804: 150233, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520920

RESUMEN

Understanding about the influence of biochar colloidal and nanoscale particles on plant is limited. We therefore extracted the colloids and nanoparticles from hot pepper stalk biochar (CB600 and NB600), and examined physiological responses of cucumber early seedlings through hydroponic culture and pot experiment. CB600 had no significant effect on shoot at 500 mg/L, while it decreased root biomass and inhibited lateral root development. The biomass and root length, area, and tip number dramatically reduced after 500 mg/L NB600 treatment. Water content of NB600-exposed shoot was lower, suggesting water uptake and transfer might be hindered. For resisting exposure stress, root hair number and length increased. Even, the study observed swelling and hyperplasia of root hairs after direct exposure of CB600 and NB600. These adverse effects might be associated with the contact and adhesion of CB600 and NB600 with sharp edges to root surface. For a low concentration of 50 mg/L, NB600 did not influence cucumber early seedlings. In soil, CB600 and NB600 did not cause inhibitory effect at relatively high contents of 500 mg/kg and 2000 mg/kg. This study provides useful information for understanding phytotoxicity and environmental risk of biochar colloids and nanoparticles, which has significant implications with regard to biochar application safety.


Asunto(s)
Cucumis sativus , Nanopartículas , Carbón Orgánico/toxicidad , Coloides , Nanopartículas/toxicidad , Raíces de Plantas , Plantones , Suelo
18.
Sci Total Environ ; 806(Pt 2): 150385, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610565

RESUMEN

Variations in iodinated aromatic disinfection byproducts (DBPs) in the presence of I- and organic compounds as a function of reaction time in different molar ratios (MRs) of HOCl:NH3-N were investigated. Up to 17 kinds of iodinated aromatic DBPs were identified in the breakpoint chlorination of iodide (I-)/organic (phenol, bisphenol S (BPS) and p-nitrophenol (p-NP)) systems, and the possible pathways for the formation of iodinated aromatic DBPs were proposed. The reaction pathways include HOCl/HOI electrophilic substitution and oxidation, while the dominant iodinated DBPs were quantified. In the I-/phenol system (pH = 7.0), the sum of the concentrations of four iodinated aliphatic DBPs ranged from 0.32 to 1.04 µM (triiodomethane (TIM), dichloroiodomethane (DCIM), diiodochloromethane (DICM) and monoiodoacetic acid (MIAA)), while the concentration of 4-iodophenol ranged from 2.99 to 12.87 µM. The concentration of iodinated aromatic DBPs remained stable with an MR = 1:1. When the MR was 6:1, iodinated aromatic DBPs decreased with increasing reaction time, in which the main disinfectant in the system was active chlorine. This study proposed the formation mechanism of iodinated aromatic DBPs during the breakpoint chlorination of iodide-containing water. These results can be used to control the formation of hazardous iodinated aromatic DBPs in the disinfection of iodine containing water.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfectantes/análisis , Desinfección , Halogenación , Yoduros , Nitrógeno , Agua , Contaminantes Químicos del Agua/análisis
19.
Bioresour Technol ; 346: 126587, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34933104

RESUMEN

The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.


Asunto(s)
Compostaje , Lignina , Estiércol , Suelo , Residuos Sólidos
20.
Sci Total Environ ; 797: 149152, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346366

RESUMEN

Iodinated disinfection by-products (DBPs) have been attracting great attention due to their potential high toxicity to human health. Understanding of formation mechanisms and transformation process of iodinated aromatic DBPs during the chlorination of iodide-containing water is crucial. Phenol was therefore chosen as a representative of phenolic compounds to investigate the generation of iodinated aromatic DBPs in a chlorine/phenol/iodide system. The presence of iodide in water could enhance the removal of phenol by chlorine due to higher second order rate constants of HOI with phenol than that of HOCl with phenol. Fourteen kinds of iodinated aromatic DBPs were identified, which were generated from oxidation and electrophilic substitution of phenol by HOCl and HOI. Iodinated phenolic DBPs were sources of iodinated quinone DBPs and chlorinated/iodinated phenolic DBPs. Alkaline condition favored the formation of iodinated phenolic DBPs, while acid condition favored the production of iodinated quinone DBPs. Neutral condition might be the most suitable pH condition to control the formation of iodinated aromatic DBPs. The relative concentration of almost all iodinated aromatic DBPs first increased and then decreased with time, indicating iodinated aromatic DBPs might be further converted into halogenated aliphatic DBPs during the chlorination. This research provides a research basis for the removal of phenol in water.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Humanos , Yoduros , Fenol , Fenoles , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA