Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309200

RESUMEN

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Síndrome de Respuesta Inflamatoria Sistémica , Animales , Humanos , Ratones , Apoptosis , Células HT29 , Inflamación/metabolismo , Necrosis , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Azepinas/química , Azepinas/farmacología
2.
Tree Physiol ; 44(2)2024 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-38123505

RESUMEN

Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.


Asunto(s)
Populus , Madera , Citocininas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Floema/metabolismo , Regulación de la Expresión Génica de las Plantas , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
3.
Sci Total Environ ; 894: 164898, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343848

RESUMEN

The distribution of microbial communities along salinity gradients in the surface layer of salinized soils has been widely studied. However, it is unknown whether microbial communities exhibit similar distribution patterns in surface and deep soils. Additionally, the relationship between soil depth, salinity, and sulfur metabolism remains unclear. Herein, bulk soils in the surface (S, 5-10 cm) and deep (D, 20-25 cm) layers from high- and low-salinity soils were analyzed using metagenomic and physicochemical analyses. Soil depth was significantly correlated to the concentration of sulfur compounds in the soil and exerted a stronger effect than salinity. Non-metric multidimensional scaling analysis revealed significant differences in microbial community structure with varying soil depths and salinities. However, soil depth clearly influenced microbial community abundance, homogeneity, and diversity, while salinity had a limited effect on microbial abundance. Archaea and bacteria were enriched in the surface and deep soils, respectively. Gene abundance analysis revealed significant differences in the abundance of sulfur-related genes at different soil depths. The abundance of sulfur oxidation genes was lower in deep soil than in surface soil, whereas the abundance of other sulfur-related genes showed the opposite trend. Redundancy analysis (RDA) showed that environmental factors and sulfur compounds have a significant impact on sulfur metabolism genes, with sulfide significantly affecting low-salinity soils in the surface and deep layers, whereas salinity and sulfane sulfur had a greater correlation with high-salinity soils. Correlation analysis further showed that Euryarchaeota clustered with Bacteroidetes and Balneolaeota, while Proteobacteria clustered with many phyla, such as Acidobacteria. Various sulfur metabolism genes were widely distributed in both clusters. Our results indicate that microorganisms actively participate in the sulfur cycle in saline soils and that soil depth can affect these processes and the structure of microbial communities to a greater extent than soil salinity.


Asunto(s)
Microbiota , Suelo , Suelo/química , Salinidad , Microbiología del Suelo , Bacterias/genética , Azufre , Compuestos de Azufre
4.
Metabolites ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36837837

RESUMEN

An incomplete Sox system lacking sulfane dehydrogenase SoxCD may produce and accumulate sulfane sulfur when oxidizing thiosulfate. However, how bacteria alleviate the pressure of sulfane sulfur accumulation remains largely unclear. In this study, we focused on the bacterium Cupriavidus pinatubonensis JMP134, which contains a complete Sox system. When soxCD was deleted, this bacterium temporarily produced sulfane sulfur when oxidizing thiosulfate. Persulfide dioxygenase (PDO) in concert with glutathione oxidizes sulfane sulfur to sulfite. Sulfite can spontaneously react with extra persulfide glutathione (GSSH) to produce thiosulfate, which can feed into the incomplete Sox system again and be oxidized to sulfate. Furthermore, the deletion strain lacking PDO and SoxCD produced volatile H2S gas when oxidizing thiosulfate. By comparing the oxidized glutathione (GSSG) between the wild-type and deletion strains, we speculated that H2S is generated during the interaction between sulfane sulfur and the glutathione/oxidized glutathione (GSH/GSSG) redox couple, which may reduce the oxidative stress caused by the accumulation of sulfane sulfur in bacteria. Thus, PDO and H2S release play a critical role in alleviating sulfane sulfur toxicity after the loss of soxCD in C. pinatubonensis JMP134.

5.
Redox Biol ; 53: 102345, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653932

RESUMEN

Heterotrophic bacteria and human mitochondria often use sulfide: quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) to oxidize sulfide to sulfite and thiosulfate. Bioinformatic analysis showed that the genes encoding RHOD domains were widely presented in annotated sqr-pdo operons and grouped into three types: fused with an SQR domain, fused with a PDO domain, and dissociated proteins. Biochemical evidence suggests that RHODs facilitate the formation of thiosulfate and promote the reaction between inorganic polysulfide and glutathione to produce glutathione polysulfide. However, the physiological roles of RHODs during sulfide oxidation by SQR and PDO could only be tested in an RHOD-free host. To test this, 8 genes encoding RHOD domains in Escherichia coli MG1655 were deleted to produce E. coli RHOD-8K. The sqrCp and pdoCp genes from Cupriavidus pinatubonensis JMP134 were cloned into E. coli RHOD-8K. SQRCp contains a fused RHOD domain at the N-terminus. When the fused RHOD domain of SQRCp was inactivated, the cells oxidized sulfide into increased thiosulfate with the accumulation of cellular sulfane sulfur in comparison with cells containing the intact sqrCp and pdoCp. The complementation of dissociated DUF442 minimized the accumulation of cellular sulfane sulfur and reduced the production of thiosulfate. Further analysis showed that the fused DUF442 domain modulated the activity of SQRCp and prevented it from directly passing the produced sulfane sulfur to GSH. Whereas, the dissociated DUF442 enhanced the PDOCp activity by several folds. Both DUF442 forms minimized the accumulation of cellular sulfane sulfur, which spontaneously reacted with GSH to produce GSSG, causing disulfide stress during sulfide oxidation. Thus, RHODs may play multiple roles during sulfide oxidation.


Asunto(s)
Sulfuro de Hidrógeno , Quinona Reductasas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutatión/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Quinona Reductasas/química , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Tiosulfatos/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(4): 913-921, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35285190

RESUMEN

Emodin nanostructured lipid carriers(ED-NLC) were prepared and their quality was evaluated in vitro. Based on the results of single-factor experiments, the ED-NLC formulation was optimized by Box-Behnken response surface method with the dosages of emodin, isopropyl myristate and poloxamer 188 as factors and the nanoparticle size, encapsulation efficiency and drug loading as evaluation indexes. Then the evaluation was performed on the morphology, size and in vitro release of the nanoparticles prepared by emulsification-ultrasonic dispersion method in line with the optimal formulation, i.e., 3.27 mg emodin, 148.68 mg isopropyl myristate and 173.48 mg poloxamer 188. Under a transmission electron microscope(TEM), ED-NLC were spherical and their particle size distribution was uniform. The particle size of ED-NLC was(97.02±1.55) nm, the polymer dispersion index 0.21±0.01, the zeta potential(-38.96±0.65) mV, the encapsulation efficiency 90.41%±0.56% and the drug loading 1.55%±0.01%. The results of differential scanning calorimeter(DSC) indicated that emodin may be encapsulated into the nanostructured lipid carriers in molecular or amorphous form. In vitro drug release had obvious characteristics of slow release, which accorded with the first-order drug release equation. The fitting model of Box-Behnken response surface methodology was proved accurate and reliable. The optimal formulation-based ED-NLC featured concentrated particle size distribution and high encapsulation efficiency, which laid a foundation for the follow-up study of ED-NLC in vivo.


Asunto(s)
Emodina , Nanoestructuras , Portadores de Fármacos , Estudios de Seguimiento , Lípidos
7.
Appl Environ Microbiol ; 88(3): e0194121, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878813

RESUMEN

Sulfur-oxidizing bacteria can oxidize hydrogen sulfide (H2S) to produce sulfur globules. Although the process is common, the pathway is unclear. In recombinant Escherichia coli and wild-type Corynebacterium vitaeruminis DSM 20294 with sulfide:quinone oxidoreductase (SQR) but no enzymes to oxidize zero valence sulfur, SQR oxidized H2S into short-chain inorganic polysulfide (H2Sn, n ≥ 2) and organic polysulfide (RSnH, n ≥ 2), which reacted with each other to form long-chain GSnH (n ≥ 2) and H2Sn before producing octasulfur (S8), the main component of elemental sulfur. GSnH also reacted with glutathione (GSH) to form GSnG (n ≥ 2) and H2S; H2S was again oxidized by SQR. After GSH was depleted, SQR simply oxidized H2S to H2Sn, which spontaneously generated S8. S8 aggregated into sulfur globules in the cytoplasm. The results highlight the process of sulfide oxidation to S8 globules in the bacterial cytoplasm and demonstrate the potential of using heterotrophic bacteria with SQR to convert toxic H2S into relatively benign S8 globules. IMPORTANCE Our results provide evidence of H2S oxidation producing octasulfur globules via sulfide:quinone oxidoreductase (SQR) catalysis and spontaneous reactions in the bacterial cytoplasm. Since the process is an important event in geochemical cycling, a better understanding facilitates further studies and provides theoretical support for using heterotrophic bacteria with SQR to oxidize toxic H2S into sulfur globules for recovery.


Asunto(s)
Sulfuro de Hidrógeno , Quinona Reductasas , Bacterias Aerobias/metabolismo , Citoplasma/metabolismo , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Quinona Reductasas/metabolismo , Sulfuros/metabolismo
8.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32917752

RESUMEN

Heterotrophic bacteria actively participate in the biogeochemical cycle of sulfur on Earth. The heterotrophic bacterium Cupriavidus pinatubonensis JMP134 contains several enzymes involved in sulfur oxidation, but how these enzymes work together to oxidize sulfide in the bacterium has not been studied. Using gene-deletion and whole-cell assays, we determined that the bacterium uses sulfide:quinone oxidoreductase to oxidize sulfide to polysulfide, which is further oxidized to sulfite by persulfide dioxygenase. Sulfite spontaneously reacts with polysulfide to produce thiosulfate. The sulfur-oxidizing (Sox) system oxidizes thiosulfate to sulfate. Flavocytochrome c sulfide dehydrogenase enhances thiosulfate oxidation by the Sox system but couples with the Sox system for sulfide oxidation to sulfate in the absence of sulfide:quinone oxidoreductase. Thus, C. pinatubonensis JMP134 contains a main pathway and a contingent pathway for sulfide oxidation.IMPORTANCE We establish a new pathway of sulfide oxidation with thiosulfate as a key intermediate in Cupriavidus pinatubonensis JMP134. The bacterium mainly oxidizes sulfide by using sulfide:quinone oxidoreductase, persulfide dioxygenase, and the Sox system with thiosulfate as a key intermediate. Although the purified and reconstituted Sox system oxidizes sulfide, its rate of sulfide oxidation in C. pinatubonensis JMP134 is too low to be physiologically relevant. The findings reveal how these sulfur-oxidizing enzymes participate in sulfide oxidation in a single bacterium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus/metabolismo , Sulfatos/metabolismo , Sulfuros/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Tiosulfatos/metabolismo
9.
Front Microbiol ; 10: 298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873134

RESUMEN

Hydrogen sulfide (H2S) has been proposed to have various physiological functions, and it may function through reactive sulfane sulfur. Since the two sulfur forms often coexist, they are normally considered interchangeable. Here, we characterized the production of H2S and reactive sulfane sulfur in Escherichia coli MG1655 and found that they are not readily interchangeable. They are primarily produced from L-cysteine via different enzymes. L-Cysteine desulfhydrases consumed L-cysteine and directly generated H2S. The produced H2S was mainly lost through evaporation into the gas phase, as E. coli does not have enzymes that easily oxidize H2S to reactive sulfane sulfur. L-Cysteine desulfhydrases were also responsible for the degradation of exogenous L-cysteine, which is toxic at high levels. Conversely, L-cysteine aminotransferase and 3-mercaptopyruvate sulfurtransferase sequentially metabolized endogenous L-cysteine to produce cellular reactive sulfane sulfur; however, it was not a major route of H2S production during normal growth or during the metabolism of exogenous L-cysteine by the resting cells. Noticeably, the 3-mercaptopyruvate sulfurtransferase mutant contained less reactive sulfane sulfur and displayed a greater sensitivity to H2O2 than did the wild type. Thence, reactive sulfane sulfur is likely a common cellular component, involved in protein sulfhydration and protecting cells from oxidative stress.

10.
ISME J ; 11(12): 2754-2766, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28777380

RESUMEN

Sulfide (H2S, HS- and S2-) oxidation to sulfite and thiosulfate by heterotrophic bacteria, using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO), has recently been reported as a possible detoxification mechanism for sulfide at high levels. Bioinformatic analysis revealed that the sqr and pdo genes were common in sequenced bacterial genomes, implying the sulfide oxidation may have other physiological functions. SQRs have previously been classified into six types. Here we grouped PDOs into three types and showed that some heterotrophic bacteria produced and released H2S from organic sulfur into the headspace during aerobic growth, and others, for example, Pseudomonas aeruginosa PAO1, with sqr and pdo did not release H2S. When the sqr and pdo genes were deleted, the mutants also released H2S. Both sulfide-oxidizing and non-oxidizing heterotrophic bacteria were readily isolated from various environmental samples. The sqr and pdo genes were also common in the published marine metagenomic and metatranscriptomic data, indicating that the genes are present and expressed. Thus, heterotrophic bacteria actively produce and consume sulfide when growing on organic compounds under aerobic conditions. Given their abundance on Earth, their contribution to the sulfur cycle should not be overlooked.


Asunto(s)
Bacterias/metabolismo , Sulfuros/metabolismo , Aerobiosis , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Procesos Heterotróficos , Oxidación-Reducción , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Azufre/metabolismo
11.
Mol Microbiol ; 105(3): 373-384, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28612361

RESUMEN

Some heterotrophic bacteria are able to oxidize sulfide (H2 S, HS- and S2- ) to sulfite and thiosulfate via polysulfide. The genes coding for the oxidation enzymes in Cupriavidus pinatubonensis JMP134 have recently been identified; however, their regulation is unknown. A regulator gene is adjacent to the operon of the sulfide-oxidizing genes, encoding a σ54 -dependent transcription factor (FisR) with three domains: an R domain, an AAA+ domain and a DNA-binding domain. Here it is reported that the regulator responds to the presence of sulfide and activates the sulfide-oxidizing genes. FisR binds to its cognate operator at -114 to -135 bp of the transcription start of the operon. When polysulfide reacts with the R domain of FisR through the three conserved cysteine residues (C53, C64 and C71), FisR activates the expression of the operon. FisR is highly sensitive to polysulfide, activating σ54 -dependent transcription of sulfide-oxidizing genes for sulfide removal. Further, sequence analysis indicates that FisR-type regulators are relatively common for controlling sulfide-oxidizing genes under sulfide stress in the Proteobacteria.


Asunto(s)
Cupriavidus/genética , Azufre/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Cupriavidus/metabolismo , Cisteína , Regulación Bacteriana de la Expresión Génica/genética , Genes Reguladores , Operón , Oxidación-Reducción , Sulfuros/metabolismo , Tiosulfatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Wei Sheng Wu Xue Bao ; 57(4): 597-608, 2017 04 04.
Artículo en Chino | MEDLINE | ID: mdl-29756742

RESUMEN

Objective: To reflect the importance of nitrite reductase (NIR) in the environment, we studied its distribution. Methods: The sequences of NIR were searched in the sequenced genome database at NCBI based on previous reported NIR sequences. The sequence similarity was done by multiple sequence alignment, and phylogenetic relationship was evaluated via constructing the phylogenetic tree. Furthermore, their distribution in the marine metagenome was studied by metagenomics. Results: The homologues of these two enzymes were 397 and 812 strains in sequenced genome, and the proportion was 8 and 15.7 percent, respectively. Almost all of archaea containing type II NIR. They have high identity by multiple sequence alignment analysis. The cofactor, the substrate and the cooper binding sites in type II were high conserved, suggesting that these enzymes had the specific function in denitrification. Phylogenetic analysis showed the two enzymes may have the common ancestor. In marine metagenome analysis, type I and II have 6 and 35 reads per 100000 reads, respectively, the two types of NIRs have the biggest proportion at the tropical south pacific area. Conclusion: Collectively, we suggested NIR, especially type II, play a key role in bioremediation of nitrogen contamination.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/genética , Óxido Nítrico/metabolismo , Nitrito Reductasas/genética , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metagenoma , Metagenómica , Datos de Secuencia Molecular , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Filogenia , Agua de Mar/microbiología , Alineación de Secuencia
13.
Environ Microbiol ; 18(12): 5123-5136, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27573649

RESUMEN

Many heterotrophic bacteria contain sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) genes. It is unclear how these enzymes cooperate to oxidise sulfide in bacteria. Cupriavidus pinatubonensis JMP134 contains a gene cluster of sqr and pdo, and their functions were analysed in Escherichia coli. Recombinant E. coli cells with SQR and PDO rapidly oxidised sulfide to thiosulfate and sulfite. The SQR also contains a DUF442 domain that was shown to have rhodanese activities. E. coli cells with PDO and SQR-C94S, an active site mutant of the rhodanese domain, oxidised sulfide to thiosulfate with transitory accumulation of polysulfides. Cellular and enzymatic evidence showed that DUF442 speeds up the reaction of polysulfides with glutathione to produce glutathione persulfide (GSSH). Thus, SQR oxidises sulfide to polysulfides; rhodanese enhances the reaction of polysulfides with glutathione to produce GSSH; PDO oxidises GSSH to sulfite; sulfite spontaneously reacts with polysulfides to generate thiosulfate. The pathway is different from the proposed mitochondrial pathway because it has polysulfides, that is, disulfide and trisulfide, as intermediates. The data demonstrated that heterotrophic bacteria with SQR and PDO can rapidly oxidise sulfide to thiosulfate and sulfite, providing the foundation for using heterotrophic bacteria with SQR and PDO for sulfide bioremediation.


Asunto(s)
Proteínas Bacterianas/genética , Cupriavidus/enzimología , Dioxigenasas/genética , Escherichia coli/genética , Quinona Reductasas/genética , Sulfuros/metabolismo , Sulfitos/metabolismo , Tiosulfatos/metabolismo , Proteínas Bacterianas/metabolismo , Cupriavidus/genética , Dioxigenasas/metabolismo , Escherichia coli/metabolismo , Ingeniería Genética , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Quinona Reductasas/metabolismo
14.
J Biol Chem ; 290(31): 18914-23, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26082492

RESUMEN

Persulfide dioxygenases (PDOs), also known as sulfur dioxygenases (SDOs), oxidize glutathione persulfide (GSSH) to sulfite and GSH. PDOs belong to the metallo-ß-lactamase superfamily and play critical roles in animals, plants, and microorganisms, including sulfide detoxification. The structures of two PDOs from human and Arabidopsis thaliana have been reported; however, little is known about the substrate binding and catalytic mechanism. The crystal structures of two bacterial PDOs from Pseudomonas putida and Myxococcus xanthus were determined at 1.5- and 2.5-Å resolution, respectively. The structures of both PDOs were homodimers, and their metal centers and ß-lactamase folds were superimposable with those of related enzymes, especially the glyoxalases II. The PDOs share similar Fe(II) coordination and a secondary coordination sphere-based hydrogen bond network that is absent in glyoxalases II, in which the corresponding residues are involved instead in coordinating a second metal ion. The crystal structure of the complex between the Pseudomonas PDO and GSH also reveals the similarity of substrate binding between it and glyoxalases II. Further analysis implicates an identical mode of substrate binding by known PDOs. Thus, the data not only reveal the differences in metal binding and coordination between the dioxygenases and the hydrolytic enzymes in the metallo-ß-lactamase superfamily, but also provide detailed information on substrate binding by PDOs.


Asunto(s)
Proteínas Bacterianas/química , Dioxigenasas/química , Myxococcus xanthus/enzimología , Pseudomonas putida/enzimología , beta-Lactamasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glutatión , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Soluciones , Especificidad por Sustrato
15.
Appl Environ Microbiol ; 80(5): 1799-806, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389926

RESUMEN

Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe(2+) for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.


Asunto(s)
Cianobacterias/enzimología , Cianobacterias/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Variación Genética , Proteobacteria/enzimología , Proteobacteria/genética , Clonación Molecular , Análisis por Conglomerados , Cianobacterias/metabolismo , Escherichia coli/genética , Expresión Génica , Procesos Heterotróficos , Hierro/metabolismo , Oxidación-Reducción , Filogenia , Proteobacteria/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Azufre/metabolismo
16.
Wei Sheng Wu Xue Bao ; 51(12): 1646-54, 2011 Dec.
Artículo en Chino | MEDLINE | ID: mdl-22379806

RESUMEN

OBJECTIVE: We separated, screened and identified a heterotrophic nitrifying and aerobic denitrifying bacterium from the surface sediment of a culture pool. Furthermore, we studied the role it plays in denitrification. METHODS: We separated the bacterium through enrichment culture, identified it by observing its morphological characteristics, studying its physiological and biochemical properties and making phylogenetic analysis of its 16S rDNA sequences. Then we studied the growth curve by regularly measuring the OD600 value, studied the influencing factors and optimum conditions of denitrification through orthogonal experiment, and examined its denitrification activity through interaction with the activated sludge of sewage treatment plant. RESULTS: The strain was identified as Acinetobacter and named A. sp. YF14, which is the first known Acinetobacter that carries out heterotrophic nitrification and aerobic denitrification. It reached the logarithmic growth phase after 12 hours, the stationary phase after 22 hours, and the decline phase after 45 hours. Using strain YF14 in a reactor under heterotrophic conditions, the NH+-N and total nitrogen removal rates reached 92% and 91% respectively within 3 days. In addition, nitrate and nitrite nitrogen were not observed during the incubation. Under aerobic incubation conditions, almost all of the nitrogen was removed through denitrification in the nitrate or nitrite culture medium inoculated with strain YF14. The orthogonal experiment results indicated that the denitrification effect was optimal when the rotate speed, carbon source, inoculation percentages, carbon nitrogen ratio and pH were 160 r/min, glucose, 1% , 8: 1 and 6. 5, respectively. Sorting Order of the factors on the denitrification effect was rotate speed > inoculation percentages > carbon source > carbon nitrogen ratio > pH. The strain YF14 could improve the denitrification rate by about 30% when interacting with active sludge. CONCLUSION: The strain YF14 coupling of heterotrophic nitrification and aerobic denitrification is feasible and is of practical value in water treatment.


Asunto(s)
Acinetobacter/aislamiento & purificación , Acinetobacter/metabolismo , Microbiología del Suelo , Acinetobacter/genética , Acinetobacter/crecimiento & desarrollo , Aerobiosis , Desnitrificación , Procesos Heterotróficos , Datos de Secuencia Molecular , Nitratos/metabolismo , Nitrificación , Nitritos/metabolismo , Aguas del Alcantarillado/microbiología
17.
J Environ Sci (China) ; 20(10): 1238-42, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19143349

RESUMEN

Pseudomonas sp. strain WBC-3 utilized methyl parathion or para-nitrophenol (PNP) as the sole source of carbon, nitrogen, and energy, and methyl parathion hydrolase had been previously characterized. Its chemotactic behaviors to aromatics were investigated. The results indicated that strain WBC-3 was attracted to multiple aromatic compounds, including metabolizable or transformable substrates PNP, 4-nitrocatechol, and hydroquinone. Disruption of PNP catabolic genes had no effect on its chemotactic behaviors with the same substrates, indicating that the chemotactic response in this strain was metabolism-independent. Furthermore, it was shown that strain WBC-3 had a constitutive beta-ketoadipate chemotaxis system that responded to a broad range of aromatic compounds, which was different from the inducible beta-ketoadipate chemotaxis described in other Pseudomonas strains.


Asunto(s)
Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Compuestos Orgánicos/farmacología , Pseudomonas/citología , Pseudomonas/efectos de los fármacos , Biodegradación Ambiental , Factores Quimiotácticos/química , Factores Quimiotácticos/metabolismo , Odorantes , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Pseudomonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA