Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 29(11): 2316-2331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35614132

RESUMEN

Metabolic switch is critical for cell fate determination through metabolic functions, epigenetic modifications, and gene expression. However, the mechanisms underlying these alterations and their functional roles remain unclear. Here, we show that Plin2-mediated moderate lipid hydrolysis is critical for pluripotency of embryonic stem cells (ESCs). Upon exit from pluripotency, lipid droplet (LD)-associated protein Plin2 is recognized by Hsc70 and degraded via chaperone-mediated autophagy to facilitate LD mobilization. Enhancing lipid hydrolysis by Plin2 knockout promotes pluripotency exit, which is recovered by ATGL inhibition. Mechanistically, excessive lipid hydrolysis induces a dramatic lipidomic remodeling characterized by decreased cardiolipin and phosphatidylethanolamine, which triggers defects in mitochondrial cristae and fatty acid oxidation, resulting in reduced acetyl-CoA and histone acetylation. Our results reveal how LD mobilization is regulated and its critical role in ESC pluripotency, and indicate the mechanism linking LD homeostasis to mitochondrial remodeling and epigenetic regulation, which might shed light on development and diseases.


Asunto(s)
Histonas , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Acetilación , Histonas/metabolismo , Epigénesis Genética , Lipidómica , Perilipina-2/genética , Perilipina-2/metabolismo , Lípidos
2.
Cell Death Differ ; 29(5): 1042-1054, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34815549

RESUMEN

Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.


Asunto(s)
Cromatina , Heterocromatina , Reprogramación Celular , Epigénesis Genética , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , Fosforilación
5.
Nat Metab ; 2(9): 882-892, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839595

RESUMEN

Somatic cell reprogramming provides insight into basic principles of cell fate determination, which remain poorly understood. Here we show that the transcription factor Glis1 induces multi-level epigenetic and metabolic remodelling in stem cells that facilitates the induction of pluripotency. We find that Glis1 enables reprogramming of senescent cells into pluripotent cells and improves genome stability. During early phases of reprogramming, Glis1 directly binds to and opens chromatin at glycolytic genes, whereas it closes chromatin at somatic genes to upregulate glycolysis. Subsequently, higher glycolytic flux enhances cellular acetyl-CoA and lactate levels, thereby enhancing acetylation (H3K27Ac) and lactylation (H3K18la) at so-called 'second-wave' and pluripotency gene loci, opening them up to facilitate cellular reprogramming. Our work highlights Glis1 as a powerful reprogramming factor, and reveals an epigenome-metabolome-epigenome signalling cascade that involves the glycolysis-driven coordination of histone acetylation and lactylation in the context of cell fate determination.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigenoma , Células Madre Pluripotentes Inducidas , Metaboloma , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Acetilcoenzima A/metabolismo , Animales , Reprogramación Celular , Senescencia Celular , Inmunoprecipitación de Cromatina , Glucosa/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratones , Plásmidos/genética
6.
EMBO J ; 39(1): e99165, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571238

RESUMEN

The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.


Asunto(s)
Reprogramación Celular , Células Epiteliales/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Cultivadas , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Fibroblastos/citología , Fibroblastos/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Sci Adv ; 5(11): eaax7525, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31807705

RESUMEN

Metabolic reprogramming has emerged as a key regulator of cell fate decisions. Roles of glucose and amino acid metabolism have been extensively documented, whereas lipid metabolism in pluripotency remains largely unexplored. Using a high-coverage lipidomics approach, we reveal dynamic changes in phospholipids occurring during reprogramming and show that the CDP-ethanolamine (CDP-Etn) pathway for phosphatidylethanolamine (PE) synthesis is required at the early stage of reprogramming. Mechanistically, the CDP-Etn pathway inhibits NF-κB signaling and mesenchymal genes in a Pebp1-dependent manner, without affecting autophagy, resulting in accelerated mesenchymal-to-epithelial transition (MET) and enhanced reprogramming. Furthermore, PE binding to Pebp1 enhances the interaction of Pebp1 with IKKα/ß and reduces the phosphorylation of IKKα/ß. The CDP-Etn-Pebp1 axis is associated with EMT/MET in hepatocyte differentiation, indicating that Etn/PE is a broad-spectrum MET/EMT-regulating metabolite. Collectively, our study reveals an unforeseen connection between phospholipids, cell migration, and pluripotency and highlights the importance of phospholipids in cell fate transitions.


Asunto(s)
Diferenciación Celular , Transición Epitelial-Mesenquimal , Hepatocitos/metabolismo , Fosfatidiletanolaminas/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Animales , Línea Celular , Movimiento Celular , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminas/metabolismo , Hepatocitos/citología , Quinasa I-kappa B/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Células Madre Pluripotentes/citología
9.
Cell Metab ; 28(6): 935-945.e5, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174306

RESUMEN

Reprogramming of somatic cells to induced pluripotent stem cells reconfigures chromatin modifications. Whether and how this process is regulated by signals originating in the mitochondria remain unknown. Here we show that the mitochondrial permeability transition pore (mPTP), a key regulator of mitochondrial homeostasis, undergoes short-term opening during the early phase of reprogramming and that this transient activation enhances reprogramming. In mouse embryonic fibroblasts, greater mPTP opening correlates with higher reprogramming efficiency. The reprogramming-promoting function of mPTP opening is mediated by plant homeodomain finger protein 8 (PHF8) demethylation of H3K9me2 and H3K27me3, leading to reduction in their occupancies at the promoter regions of pluripotency genes. mPTP opening increases PHF8 protein levels downstream of mitochondrial reactive oxygen species production and miR-101c and simultaneously elevates levels of PHF8's cofactor, α-ketoglutarate. Our findings represent a novel mitochondria-to-nucleus pathway in cell fate determination by mPTP-mediated epigenetic regulation.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Células HEK293 , Humanos , Ácidos Cetoglutáricos/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA