Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Huan Jing Ke Xue ; 45(10): 5822-5832, 2024 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-39455128

RESUMEN

To explore the characteristics of phytoplankton communities and their relationship with environmental factors in different habitats of Hedi Reservoir, the inflow rivers, estuaries, and reservoir area of Hedi Reservoir were investigated in February (recession period), April (flood period), July (flood period), and December (recession period) of 2022. During the investigation, 231 species of phytoplankton that belong to seven phyla were identified, and the cell density of phytoplankton ranged from 2.94 × 106 - 8.04 × 108 cells·L-1. Phytoplankton cell density in flood periods were higher than that in recession periods, and that was higher in estuaries and the reservoir area than that in inflow rivers. Meanwhile, the cell density of phytoplankton in the estuarine and reservoir area was dominated by Cyanobacteria throughout the year, especially Raphidiopsis raciborskii, whereas the cell density of phytoplankton in inflow rivers was dominated by Cyanophyta, Chlorophyta, and Bacillariophyta. In the inflow river area, the dominant species of cyanobacteria were Microcystis aeruginosa, Limnothrix redekei, Pseudanabaena circinalis, and Merismopedia punctata; the dominant species of Chlorophyta were Chlorella vulgaris and Crucigenia tetrapedia; and the dominant species of Bacillariophyta were Chlorella vulgaris and Melosira granulate. The highest biodiversity (Shannon-Wiener Index, Pielou index, and Margalef index) were observed in the inflow river area of Hedi Reservoir. The correlation analysis (Pearson) indicated that the environmental factors that were significantly correlated to phytoplankton communities included water temperature, dissolved oxygen, pH, conductivity, nitrogen, and phosphorus concentration. The RDA analysis indicated that phytoplankton communities in the inflow river area were mainly affected by pH and total nitrogen concentration, which were majorly affected by water temperature and pH in the estuarine area and chiefly affected by turbidity and pH in the reservoir. The pH affected the changes in phytoplankton communities in all three different habitats, whereas the inflow river area was significantly affected by total nitrogen concentration, and the estuarine and reservoir were significantly affected by water temperature and turbidity, respectively.


Asunto(s)
Ecosistema , Fitoplancton , Fitoplancton/crecimiento & desarrollo , Fitoplancton/clasificación , China , Cianobacterias/crecimiento & desarrollo , Ríos , Abastecimiento de Agua , Monitoreo del Ambiente , Diatomeas/crecimiento & desarrollo , Chlorophyta/crecimiento & desarrollo , Estuarios , Eutrofización , Dinámica Poblacional
2.
Cell Rep ; 43(10): 114849, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39383035

RESUMEN

Recent evidence indicates that tissue-resident innate immune memory and trained innate immunity (TII) can be induced centrally in myeloid cells within the bone marrow and locally in tissue-resident macrophages in respiratory mucosal tissues. However, it remains unclear whether acute exposure to airborne microbial components like lipopolysaccharide (LPS) induces lasting innate immune memory in airway macrophages and TII capable of protection against heterologous pathogens. Using a murine model, we demonstrate that acute LPS exposure leads to dynamic changes in the immune phenotype of airway macrophages that persist long after the acute inflammatory response has subsided. The original airway-resident alveolar macrophage pool remains stable in size despite these changes and the earlier transient acute inflammatory responses, including monocytic recruitment in the lung. We further demonstrate that the induction of innate immune memory in airway macrophages is accompanied by TII capable of robust protection against acute pneumococcal infection, whereas it provides minimal protection against acute SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Inmunidad Innata , Lipopolisacáridos , Pulmón , Ratones Endogámicos C57BL , SARS-CoV-2 , Streptococcus pneumoniae , Animales , Lipopolisacáridos/farmacología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Pulmón/microbiología , Streptococcus pneumoniae/inmunología , Ratones , Macrófagos Alveolares/inmunología , Infecciones Neumocócicas/inmunología , Memoria Inmunológica , Femenino , Modelos Animales de Enfermedad , Inmunidad Entrenada
3.
Proc Natl Acad Sci U S A ; 121(36): e2405168121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39196620

RESUMEN

Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.

4.
Artículo en Chino | MEDLINE | ID: mdl-39212067

RESUMEN

Objective To investigate the effects of sakuranetin (SK) on motor functions in the mouse model of spinal cord injury (SCI) and decipher the mechanism.Methods Fifty-four C57BL/6J mice were randomized into sham,SCI,and SK groups.The mice in the sham group underwent only laminectomy at T9,while those in the SCI and SK groups were subjected to spinal cord contusion injury at T9.Behavioral tests were conducted at different time points after surgery to evaluate the motor functions of mice in each group.The pathological changes in the tissue were observed to assess the extent of SCI in each group.The role and mechanism of SK in SCI were predicted by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses.Reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence were employed to evaluate the inflammation and activation of microglia in SCI mice.BV2 cells in vitro were classified into control (Con),lipopolysaccharide (LPS),and LPS+SK groups.The effects of SK intervention on the release of inflammatory cytokines and the activation of BV2 cells were evaluated.Furthermore,the phosphatidylinositol-3-kinase(PI3K)/protein kinase B (AKT) signaling pathway activator insulin-like growth factor-1 (IGF-1) was used to treat the SK-induced BV2 cells in vitro (SK+IGF-1 group),and SK was used to treat the IGF-1-induced BV2 cells in vitro (IGF-1+SK group).Western blotting was conducted for molecular mechanism validation.Results Behavioral tests and histological staining results showed that compared with the SCI group,the SK group exhibited improved motor abilities and reduced area of damage in the spinal cord tissue (all P<0.001).The GO enrichment analysis predicted that SK may be involved in the inflammation following SCI.The KEGG enrichment analysis predicted that SK regulated the PI3K/Akt pathway to exert the neuroprotective effect.The results from in vitro and in vivo experiments showed that SK lowered the levels of tumor necrosis factor-α,interleukin-6,and interleukin-1ß and inhibited the activation of microglia (all P<0.05).The results of Western blotting showed that SK down-regulated the phosphorylation levels of PI3K and Akt (all P<0.001) and inhibited the IGF-1-induced elevation of PI3K and Akt phosphorylation levels (all P<0.001).Conversely,IGF-1 had the opposite effects (P=0.001,P<0.001).The results of reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence showed that the SK+IGF-1 group had higher levels of inflammatory cytokines and more activated microglia than the SK group(all P<0.05).Conclusion SK may suppress the activation of the PI3K/Akt pathway to inhibit the inflammation mediated by SCI-induced activation of microglia,ameliorate the pathological damage of the spinal cord tissue,and promote the recovery of motor functions in SCI mice.

5.
J Inflamm Res ; 17: 5509-5519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170730

RESUMEN

Purpose: To investigate the clinical value of adding Jin-gu-lian (JGL) capsules into rheumatoid arthritis (RA) treatment by examining its impact on disease activity and quality of life (QoL) through a real-world study (RWS). Patients and methods: RWS was conducted to compare the inflammatory markers, including IgM-RF, ESR, and CRP, between RA patients treated with only Western medicine (reference group) and Western medicine plus JGL (study group) during one-year follow-up. The clinical data was acquired from the hospital information system (HIS). Telephone call-based follow-up on QoL (SF-36) and accompanying symptoms, including gastrointestinal complaints, attacks of pneumonia, herpes zoster, URTIs, UTIs, and LTBIs. Finally, the anti-rheumatic drugs given to both groups were also compared. RWS was further validated for its feasibility by performing studies with hydroxychloroquine (HCQ) treatment, which is a commonly used anti-rheumatic drug for RA with mild effect. Results: The study group failed to show a significant effect on inflammatory markers, especially on the CRP levels, indicating no additional clinical value of supplementing with JGL. Similarly, at the endpoint, no significant differences between the two groups on QoL and related symptoms were observed. Our study suggests that the patients in the study group might need more anti-rheumatic drugs to fill the treatment insufficiency, and the application ratio of NSAIDs would be significantly higher than the reference group. By conducting this study on HCQ treatment, the positive aspects of controlling disease activity and reducing NSAIDs application were found, which demonstrates the utility of performing the RWS to evaluate the effect of JGL. Conclusion: Adding JGL did not significantly improve the clinical efficacy of RA treatment by this RWS. Folk herbal prescriptions such as JGL are suggested to underwent strict clinical trials before application.

7.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685243

RESUMEN

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Asunto(s)
Proteínas de Insectos , Feromonas , Animales , Feromonas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Masculino , Femenino , Unión Proteica , Heterópteros/metabolismo , Heterópteros/genética
9.
Phys Rev Lett ; 132(3): 036502, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307085

RESUMEN

The recently discovered nickelate superconductor La_{3}Ni_{2}O_{7} has a high transition temperature near 80 K under pressure, providing an additional avenue for exploring unconventional superconductivity. Here, with state-of-the-art tensor-network methods, we study a bilayer t-J-J_{⊥} model for La_{3}Ni_{2}O_{7} and find a robust s-wave superconductive (SC) order mediated by interlayer magnetic couplings. Large-scale density matrix renormalization group calculations find algebraic pairing correlations with Luttinger parameter K_{SC}≲1. Infinite projected entangled-pair state method obtains a nonzero SC order directly in the thermodynamic limit, and estimates a strong pairing strength Δ[over ¯]_{z}∼O(0.1). Tangent-space tensor renormalization group simulations elucidate the temperature evolution of SC pairing and further determine a high SC temperature T_{c}^{*}/J∼O(0.1). Because of the intriguing orbital selective behaviors and strong Hund's rule coupling in the compound, t-J-J_{⊥} model has strong interlayer spin exchange (while negligible interlayer hopping), which greatly enhances the SC pairing in the bilayer system. Such a magnetically mediated pairing has also been observed recently in the optical lattice of ultracold atoms. Our accurate and comprehensive tensor-network calculations reveal a robust SC order in the bilayer t-J-J_{⊥} model and shed light on the pairing mechanism of the high-T_{c} nickelate superconductor.

10.
Cytotechnology ; 76(1): 69-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304624

RESUMEN

Bioprocess development benefits from kinetic models in many aspects, including scale-up, optimization, and process understanding. However, current models are unable to simulate the production process of a coxsackievirus A6 (CVA6) virus-like particle (VLP) vaccine using Chinese hamster ovary cell culture. In this study, a novel kinetic model was constructed, correlating (1) cell growth, death, and lysis kinetics, (2) metabolism of major metabolites, and (3) CVA6 VLP production. To construct the model, two batches of a laboratory-scale 2 L bioreactor cell culture were prepared and various pH shift strategies were applied to examine the effect of pH shift. The proposed model described the experimental data under various conditions with high accuracy and quantified the effect of pH shift. Next, cell culture performance with various pH shift timings was predicted by the calibrated model. A trade-off relationship was found between product yield and quality. Consequently, multiple objective optimization was performed by integrating desirability methodology with model simulation. Finally, the optimal operating conditions that balanced product yield and quality were predicted. In general, the proposed model improved the process understanding and enabled in silico process development of a CVA6 VLP vaccine. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00598-8.

11.
ChemSusChem ; 17(4): e202301662, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38169145

RESUMEN

Perovskite solar cell (PSC) shows a great potential to become the next-generation photovoltaic technology, which has stimulated researchers to engineer materials and to innovate device architectures for promoting device performance and stability. As the power conversion efficiency (PCE) keeps advancing, the importance of exploring multifunctional materials for the PSCs has been increasingly recognized. Considerable attention has been directed to the design and synthesis of novel organic π-conjugated molecules, particularly the emerging curved ones, which can perform various unmatched functions for PSCs. In this review, the characteristics of three representative such curved π-conjugated molecules (fullerene, corannulene and helicene) and the recent progress concerning the application of these molecules in state-of-the-art PSCs are summarized and discussed holistically. With this discussion, we hope to provide a fresh perspective on the structure-property relation of these unique materials toward high-performance and high-stability PSCs.

13.
J Inflamm Res ; 16: 6167-6178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111686

RESUMEN

Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for the future treatment of venous thrombosis.

14.
Huan Jing Ke Xue ; 44(12): 6529-6540, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098381

RESUMEN

Brown carbon (BrC) refers to a group of organic compounds in fine atmospheric particles (PM2.5) that are able to absorb light in the ultraviolet and visible range. They have a significant impact on the visibility of air and on the earth's climate. In this study, we used a black carbon analyzer (Model AE33) to conduct field measurements in northern suburban Nanjing from March 2021 to February 2022. We measured the light absorption coefficients of BrC in PM2.5 and quantified the contributions of primary (BrCpri) and secondary brown carbon (BrCsec) in BrC by using the minimum correlation method (MRS), combined with the backward trajectories,potential source contribution function (PSCF) analysis, and diurnal patterns to analyze the seasonal characteristics of BrC. The results showed that the annual average light absorption of BrC was(7.76±7.17)Mm-1 (at 370 nm), and its contribution to the total aerosol light absorption was (22.0±8.8)%. BrC light absorption at different wavelengths all showed a U-shape seasonal variation of high in spring and winter and low in summer and fall. MRS analysis showed that the annual average contributions of BrCpri and BrCsec were (62.9±21.4)% and (37.1±21.4)% (at 370 nm), respectively; however, the contribution of BrCsec increased with the increase in wavelength, and it became dominant in longer wavelengths such as 660 nm. Backward trajectory and PSCF analysis showed that BrC was heavily influenced by air masses from the sea in spring, summer, and fall but was influenced greatly by local and regional continental emissions in winter. Traffic emissions in spring, summer, and fall were more intense to contribute to BrCpri than that in winter, whereas coal and biomass combustion had a greater impact on BrCpri in winter. Detailed analysis revealed that gas-phase photochemistry and aqueous chemistry had different influences on BrCsec formation in different seasons. It was mainly from gas-phase photochemistry in summer but was dominated by aqueous process in winter; both processes, however, were important pathways to BrCsec in spring and fall.

15.
World J Clin Cases ; 11(29): 7207-7213, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37946778

RESUMEN

BACKGROUND: Central venous catheters (CVCs) often cause life-threatening complications, especially CVC-related bloodstream infection (CVC-BSI) and catheter-related thrombosis (CRT). Here, we report an unusual case of misplaced CVC-induced emphysematous thrombophlebitis, a rare but potentially lethal form of CRT and CVC-BSI characterized by both thrombosis and gas formation. CASE SUMMARY: A 48-year-old male presented to the emergency room of a local hospital with sudden-onset headache and coma for 4 h. Computed tomography (CT) revealed right basal ganglia hemorrhage, so emergency decompressive craniotomy was performed and a CVC was inserted through the right subclavian vein for fluid resuscitation during anesthesia. Two days later, the patient was transferred to the intensive care unit of our hospital for further critical care. On day 9 after CVC insertion, the patient suddenly developed fever and hypotension. Point-of-care ultrasound (POCUS) demonstrated thrombosis and dilatation of the right internal jugular vein (IJV) filled with thrombosis. Ultrasonography also revealed that the CVC tip had been misplaced into the IJV and was surrounded by gas bubbles, which manifested as hyperechoic lines with dirty shadowing and comet-tail artifacts. Further CT scan confirmed air bubbles surrounding the CVC in the right neck. The final diagnosis was septic emphysematous thrombophlebitis induced by a misplaced CVC and ensuing septic shock. The responsible CVC was removed immediately. The patient received fluid resuscitation, intravenous noradrenaline, and a 10-d ultra-broad spectrum antibiotic treatment to combat septic shock. Both CVC and peripheral venous blood cultures yielded methicillin-resistant Staphylococcus cohnii. The patient was gradually weaned off vasopressors and the symptoms of redness and swelling in the right neck subsided within 7 d. CONCLUSION: Emphysematous thrombophlebitis is a fulminant and life-threatening CVC-BSI associated with thrombosis and gas formation in the vein. A misplaced CVC may facilitate the development of emphysematous thrombophlebitis. POCUS can easily identify the artifacts produced by gas and thrombosis, facilitating rapid diagnosis at the bedside.

16.
Commun Biol ; 6(1): 1202, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007598

RESUMEN

Adding adipose cells to cell-cultured meat can provide a distinctive aroma and juicy texture similar to real meat. However, a significant challenge still exists in obtaining seed cells that can be propagated for long periods, maintain their adipogenic potential, and reduce production costs. In this study, we present a cell strain derived from immortalized porcine preadipocytes that can be subculture for over 40 passages without losing differentiation capacity. This cell strain can be differentiated within 3D bioscaffolds to generate cell-cultured fat using fewer chemicals and less serum. Additionally, it can be expanded and differentiated on microcarriers with upscaled culture to reduce costs and labor. Moreover, it can co-differentiate with muscle precursor cells, producing a pattern similar to real meat. Therefore, our cell strain provides an exceptional model for studying and producing cell-cultured fat.


Asunto(s)
Adipocitos , Adipogénesis , Porcinos , Animales , Células Cultivadas , Diferenciación Celular
17.
Mol Immunol ; 163: 207-215, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37839259

RESUMEN

Inhibition of type II alveolar epithelial (AE-II) cell apoptosis is a critical way to cure hyperoxia-induced acute lung injury (HALI). It has been reported that miR-21-5p could reduce H2O2-induced apoptosis in AE-II cells. However, the upstream molecular mechanism remains unclear. Herein, we established a cellular model of HALI by exposing AE-II cells to H2O2 treatment. It was shown that miR-21-5p alleviated H2O2-induced apoptosis in AE-II cells. ROS inhibition decreased apoptosis of H2O2-evoked AE-II cells via increasing miR-21-5p expression. In addition, ROS induced MAPK and STAT3 phosphorylation in H2O2-treated AE-II cells. MAPK inactivation reduces H2O2-triggered AE-II cell apoptosis. MAPK activation inhibits miR-21-5p expression by promoting STAT3 phosphorylation in H2O2-challenged AE-II cells. Furthermore, STAT3 activation eliminated MAPK deactivation-mediated inhibition on the apoptosis of AE-II cells under H2O2 condition. In conclusion, ROS-mediated MAPK activation promoted H2O2-triggered AE-II cell apoptosis by inhibiting miR-21-5p expression via STAT3 phosphorylation, providing novel targets for HALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Apoptosis , Hiperoxia , MicroARNs , Humanos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Peróxido de Hidrógeno/metabolismo , Hiperoxia/complicaciones , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo
18.
J Dermatolog Treat ; 34(1): 2190829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37694979

RESUMEN

INTRODUCTION: The injectable skin fillers available for soft tissue augmentation are constantly growing, providing esthetic surgeons with more options in the treatment of scars, lines, and wrinkles. Hyaluronic acid (HA)-derived injectable fillers are ideal to reduce the appearance of nasolabial folding. This study investigated the efficacy and safety of the commercially available HA filler from Maxigen Biotech Inc. (MBI-FD) in the treatment of nasolabial folds (NLFs). METHODS: We analyzed 1,4-butanediol diglycidyl ether (BDDE) residues and injection force test and observed the protein content in MBI-FD, and then was cultured in fibroblast L929 cells and examined for cytotoxicity. Finally, 95 healthy participants underwent dermal filler injection therapy to evaluate the efficacy and safety for 24 and 52 weeks, respectively. RESULTS: BDDE residues in MBI-FD was <0.125 µg/mL. MBI-FD was fitted using 27- and 30-G injection needles with an average pushing force of 14.30 ± 2.07 and 36.43 ± 3.11 N, respectively. Sodium hyaluronate protein in MBI-FD was 7.19 µg/g. The cell viabilities of 1× and 0.5× MBI-FD were 83.25% ± 3.58% and 82.23% ± 1.85%, respectively, indicating MBI-FD had no cytotoxicity, and decreased NLF wrinkles with no serious adverse events. CONCLUSION: MBI-FD is an effective filler for tissue augmentation of the NLFs and may be a suitable candidate as an injectable dermal filler for tissue augmentation in humans in the future.


Asunto(s)
Técnicas Cosméticas , Rellenos Dérmicos , Envejecimiento de la Piel , Humanos , Ácido Hialurónico/uso terapéutico , Rellenos Dérmicos/efectos adversos , Surco Nasolabial , Técnicas Cosméticas/efectos adversos , Método Doble Ciego , Resultado del Tratamiento
19.
World J Clin Cases ; 11(20): 4833-4842, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37583991

RESUMEN

BACKGROUND: Severe infection often results in bacteremia, which significantly increases mortality rate. Different therapeutic strategies are employed depending on whether the blood-borne infection is Gram-negative (G-) or Gram-positive (G+). However, there is no risk prediction model for assessing whether bacteremia patients are infected with G- or G+ pathogens. AIM: To establish a clinical prediction model to distinguish G- from G+ infection. METHODS: A total of 130 patients with positive blood culture admitted to a single intensive care unit were recruited, and Th1 and Th2 cytokine concentrations, routine blood test results, procalcitonin and C-reactive protein concentrations, liver and kidney function test results and coagulation function were compared between G+ and G- groups. Least absolute shrinkage and selection operator (LASSO) regression analysis was employed to optimize the selection of predictive variables by running cyclic coordinate descent and K-fold cross-validation (K = 10). The predictive variables selected by LASSO regression analysis were then included in multivariate logistic regression analysis to establish a prediction model. A nomogram was also constructed based on the prediction model. Calibration chart, receiver operating characteristic curve and decision curve analysis were adopted for validating the prediction model. RESULTS: Age, plasma interleukin 6 (IL-6) concentration and plasma aspartate aminotransferase concentration were identified from 57 measured variables as potential factors distinguishing G+ from G- infection by LASSO regression analysis. Inclusion of these three variables in a multivariate logistic regression model identified age and IL-6 as significant predictors. In receiver operating characteristic curve analysis, age and IL-6 yielded an area under the curve of 0.761 and distinguished G+ from G- infection with specificity of 0.756 and sensitivity of 0.692. Serum IL-6 and IL-10 levels were upregulated by more than 10-fold from baseline in the G- bacteremia group but by less than ten-fold in the G+ bacteremia group. The calibration curve of the model and Hosmer-Lemeshow test indicated good model fit (P > 0.05). When the decision curve analysis curve indicated a risk threshold probability between 0% and 68%, a nomogram could be applied in clinical settings. CONCLUSION: A simple prediction model distinguishing G- from G+ bacteremia can be constructed based on reciprocal association with age and IL-6 level.

20.
Pestic Biochem Physiol ; 194: 105513, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532328

RESUMEN

Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.


Asunto(s)
Heterópteros , Feromonas , Animales , Femenino , Simulación del Acoplamiento Molecular , Heterópteros/genética , Glycine max
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...