Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Ethnopharmacol ; 331: 118331, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734392

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY: This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS: The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS: This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.


Asunto(s)
Canfanos , Panax notoginseng , Ratas Sprague-Dawley , Saponinas , Espectrometría de Masas en Tándem , Animales , Panax notoginseng/química , Canfanos/farmacocinética , Saponinas/farmacocinética , Saponinas/química , Saponinas/administración & dosificación , Saponinas/sangre , Masculino , Administración Oral , Ratas , Cromatografía Líquida de Alta Presión , Adyuvantes Farmacéuticos/química , Adyuvantes Farmacéuticos/farmacocinética , Disponibilidad Biológica
2.
Arch Toxicol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703205

RESUMEN

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.

3.
Food Chem ; 445: 138748, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422865

RESUMEN

Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.


Asunto(s)
Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masas , Alimentos
4.
Eur J Pharmacol ; 965: 176196, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006926

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease, but there are few specific medications for it. Lusianthridin, a major phenanthrene component that originates from Dendrobium Sonia, has various in vitro biological functions. In this study, we aimed to evaluate the therapeutic effects of lusianthridin on high-fat diet (HFD)-induced MAFLD as well as to examine the mechanism of its effects. We fed male mice high-fat-diet for 12 weeks to induce MAFLD and then continued to feed them, either with or without lusianthridin, for another six weeks. We found that lusianthridin decreased serum triacylglycerol, hepatic triacylglycerol, and serum low density lipoprotein cholesterol. It also reduced hepatic lipid accumulation based on the results of morphology analysis. Besides, it improved hepatic inflammation as well, including a decrease in serum alanine aminotransferase and a reduction in macrophage and neutrophil infiltration. Mechanistically, surface plasmon resonance, cell thermal shift assay and dual-luciferase report system results suggested that lusianthridin combined with farnesoid X receptor (FXR) ligand binding region and activated its transcriptional activity. Lusianthridin also decreased de no lipogenesis though inhibiting Srebp1c and downstream Scd-1, Lpin1 and Dgat2 expression in a FXR-dependent manner in oleic acid treated L02 cells. Correspondingly, lusianthridin inhibited Srebp1c and downstream lipogenesis in MAFLD liver tissues of mice at both of genetic and protein levels. Finally, the protective effects of lusianthridin on hepatic steaotosis were abolished in Fxr-/- mice. Taken together, our results suggested that lusianthridin attenuated high-fat-diet induced MAFLD via activation the FXR signaling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fenantrenos , Masculino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenantrenos/farmacología , Triglicéridos , Transducción de Señal , Ratones Endogámicos C57BL , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/farmacología
5.
J Pharm Anal ; 13(9): 1080-1087, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842658

RESUMEN

Bile acids (BAs) are synthesized by the liver from cholesterol through several complementary pathways and aberrant cholesterol metabolism plays pivotal roles in the pathogeneses of cholesterol gallbladder polyps (CGP) and cholesterol gallstones (CGS). To date, there is neither systematic study on BAs profile of CGP or CGS, nor the relationship between them. To explore the metabolomics profile of plasma BAs in healthy volunteers, CGP and CGS patients, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for simultaneous determination of 42 free and conjugated BAs in human plasma. The developed method was sensitive and reproducible to be applied for the quantification of BAs in the investigation of plasma samples. The results show that, compared to healthy volunteers, CGP and CGS were both characterized by the significant decrease in plasma BAs pool size, furthermore CGP and CGS shared aberrant BAs metabolic characteristics. Chenodeoxycholic acid, glycochenodeoxycholic acid, λ-muricholic acid, deoxycholic acid, and 7-ketolithocholic acid were shared potential markers of these two cholesterol gallbladder diseases. Subsequent analysis showed that clinical characteristics including cysteine, ornithine and body mass index might be closely related to metabolisms of certain BA modules. This work provides metabolomic information for the study of gallbladder diseases and analytical methodologies for clinical target analysis and efficacy evaluation related to BAs in medical institutions.

6.
Arch Pharm Res ; 46(8): 694-712, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37733287

RESUMEN

Pyrrolizidine alkaloids (PAs) are potent hepatotoxins that can cause liver damage. Hyperoside (Hyp), a natural flavonoid, can be extracted from medicinal plants. Hyp displays hepatoprotective activity in various liver diseases. However, the potential effect and mechanism of action of Hyp in ameliorating PA-induced liver injury remain obscure. This study aimed to explore the protective effect of Hyp against PA-induced hepatotoxicity and its underlying mechanism. We established an in vitro model of PAs in mouse primary hepatocytes and developed a mouse model of acute PA toxicity to investigate the protective effect of Hyp. We found that Hyp notably attenuated PA-induced hepatotoxicity. RNA-sequencing showed that the beneficial effect of Hyp against PA-induced hepatotoxicity was associated with the transcription factor EB (TFEB)-peroxisome proliferator-activated receptor-γ coactivator-1-α (PGC1α) pathway. Our results confirmed that both the autophagy-lysosomal pathway and mitochondrial biogenesis were induced by Hyp through TFEB nuclear translocation in PA-induced liver injury. Furthermore, we demonstrated that activation of the mechanistic target of rapamycin complex 1 (mTORC1) by MHY 1485 decreased TFEB nuclear translocation and abrogated the protective effect of Hyp against PA-induced liver injury in mice. In contrast, inhibition of mTORC1 activity increased the level of TFEB and reduced hepatotoxicity induced by PAs in mouse livers. Likewise, Hyp-induced TFEB activation was validated in vitro. In conclusion, Hyp can activate the TFEB-mediated autophagy-lysosomal pathway and mitochondrial biogenesis through inhibition of mTORC1 activity, alleviating the liver injury induced by PAs, thus suggesting the potential value of Hyp in the treatment of PA-induced hepatotoxicity.

7.
Chem Biol Interact ; 380: 110505, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080376

RESUMEN

Pyrrolizidine alkaloids (PAs) are naturally occurring hepatotoxins, and herbs containing PAs are of high concern. PAs are normally found in tertiary amines and N-oxide forms (PA N-oxides), yet the latter are less evaluated for their toxicokinetics. As a continuation of our investigation into the safety assessment of PA-containing herbal medicines, the toxicity and toxicokinetic characteristics of senecionine N-oxide (a representative toxic PA N-oxide) were investigated by using the UDP-glucuronosyltransferase 1A4 humanized mouse model (hUGT1A4 mouse model) and compared with those in wild-type mice simultaneously. Results show that the toxicity caused by senecionine N-oxide exposure was evidently decreased in hUGT1A4 mice as approved by pathology and biochemistry assays. In addition, a N-glucuronidation conjugate was exclusively found in hUGT1A4 mice but not in wild-type (WT) mice. In vitro studies proved that senecionine N-oxide initially reduced to the corresponding tertiary amine alkaloid (senecionine) and then underwent N-glucuronidation via human UGT1A4. The variation in toxicokinetic characteristics was also observed between hUGT1A4 mice and WT mice with a notably enhanced clearance of senecionine N-oxide and senecionine, and accordingly less formation of pyrrole-protein adducts in hUGT1A4 mice, which finally led to the detoxification of senecionine N-oxide exposure in hUGT1A4 mice. Our results provided the first in vivo toxicity data and toxicokinetic characteristics of senecionine N-oxide in a humanized animal model and revealed that human UGT1A4 plays an important role in the detoxification of senecionine N-oxide.


Asunto(s)
Alcaloides de Pirrolicidina , Humanos , Ratones , Animales , Toxicocinética , Especificidad de la Especie , Alcaloides de Pirrolicidina/toxicidad , Alcaloides de Pirrolicidina/farmacocinética , Óxidos
8.
Nat Prod Res ; 37(22): 3826-3831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36434777

RESUMEN

Protostane-type triterpenoids are antifibrotic nature components with unique structures in Alismatis Rhizoma. However, the underlying mechanisms of them against liver fibrosis are not well illustrated. The present study aims to study the targets and mechanisms of Alismatis Rhizoma triterpenes responsible for their antifibrotic effects by network pharmacology, molecular docking, and luciferase assay. As a result, six molecular targets responsible for the antifibrotic effects of alisols against liver fibrosis were uncovered by network pharmacology, among which the activation of farnesoid X receptor (FXR/NR1H4) was highlighted and further confirmed by molecular docking and luciferase assay. Our present study provides a scientific basis for treating liver fibrosis by using Alismatis Rhizoma, especially via the FXR activation effects of alisols.

9.
EBioMedicine ; 83: 104239, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36054938

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive type of primary brain tumor and is often resistant to current therapies. Tumor microenvironment-centered therapies may unleash new hope for GBM treatment. Therefore, an in-depth understanding of tumor-stroma communication is urgently needed to identify promising therapeutic targets. METHODS: We systematically analyzed GBM single-cell RNA sequencing (scRNA-seq), bulk RNA-seq and spatial scRNA-seq data from various human and mice studies to characterize the network within the microenvironment. Moreover, we applied ex vivo co-culture system, flow cytometry analysis and immunofluorescent staining to validate our findings. FINDINGS: Our integrative analyses revealed that highly heterogeneous GBM tumor cells can be classified into MES-like, AC-like, OPC-like and NPC-like subtypes based on molecular studying. Additionally, trajectory and regulatory network inference implied a PN to MES cell state transition regulated by specific transcriptional factor (TF) regulons. Importantly, we discovered that glycoprotein nonmetastatic B (GPNMB) derived from macrophages played a crucial role in this transition through immune cell-tumor interplay. Besides, through deep signal transduction analyses and cell co-culture studies, we further disclosed that these GPNMB-high macrophage subpopulations, originating from monocytes, could also ineffectively retain T cells from activating by dendritic cells (DCs). INTERPRETATION: Our study suggests that targeting this particular GPNMB-high macrophage subset may provide a new strategy to control GBM plasticity and facilitate T cell-based immunotherapy. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/patología , Proteínas del Ojo/genética , Glioblastoma/patología , Glicoproteínas/genética , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/genética
10.
Food Chem Toxicol ; 165: 113185, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636643

RESUMEN

Uridine diphosphate glucuronosyltransferase (UGT)1A4 is responsible for N-glucuronidation of tertiary amines but is a pseudogene in commonly used rodent models in toxicity and safety assessment. As a continuation of our investigation into the toxicity and safety assessment of pyrrolizidine alkaloid (PA)-containing herbs, we generated a UGT1A4-humanized (hUGT1A4) transgenic mouse model to systematically study the toxicity, metabolism network, and toxicokinetic characteristics of senecionine (a representative toxic PA) and compared with that in the wide-type controls in parallel. As results, senecionine-induced toxicity was significantly decreased as approved by mortality, pathology, and biochemistry assays in hUGT1A4 mice and cultured primary hepatocytes. More importantly N-glucuronidation adduct was exclusively identified in all the hUGT1A4 mice, liver microsomes, and cultured primary hepatocytes, yet absent in the wide-type controls. The variation in toxicokinetic characters was also observed between hUGT1A4 mice and the wide-type controls with a notably inhibition of the toxification metabolites, i.e., pyrrole-protein adducts, in hUGT1A4 mice. Conclusively, UGT1A4 plays an important role in detoxification of senecionine and the hUGT1A4 mouse model is promising for the pre-clinical evaluation of the efficacy and toxicity of tertiary amine agents in drug development and safety assessment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Glucuronosiltransferasa , Alcaloides de Pirrolicidina , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glucurónidos , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Ratones , Ratones Transgénicos , Microsomas Hepáticos/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Alcaloides de Pirrolicidina/toxicidad
11.
Chin J Nat Med ; 20(4): 270-281, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35487597

RESUMEN

Hepatic sinusoidal obstruction syndrome (HSOS) via exposure to pyrrolizidine alkaloids (PAs) is with high mortality and there is no effective treatment in clinics. Bear bile powder (BBP) is a famous traditional animal drug for curing a variety of hepatobiliary diseases such as cholestasis, inflammation, and fibrosis. Here, we aim to evaluate the protective effect of BBP against HSOS induced by senecionine, a highly hepatotoxic PA compound. Our results showed that BBP treatment protected mice from senecionine-induced HSOS dose-dependently, which was evident by improved liver histology including reduced infiltration of inflammatory cells and collagen positive cells, alleviated intrahepatic hemorrhage and hepatic sinusoidal endothelial cells, as well as decreased conventional serum liver function indicators. In addition, BBP treatment lowered matrix metalloproteinase 9 and pyrrole-protein adducts, two well-known markers positively associated with the severity of PA-induced HSOS. Further investigation showed that BBP treatment prevents the development of liver fibrosis by decreasing transforming growth factor beta and downstream fibrotic molecules. BBP treatment also alleviated senecionine-induced liver inflammation and lowered the pro-inflammatory cytokines, in which tauroursodeoxycholic acid played an important role. What's more, BBP treatment also decreased the accumulation of hydrophobic bile acids, such as cholic acid, taurocholic acid, glycocholic acid, as well. We concluded that BBP attenuates senecionine-induced HSOS in mice by repairing the bile acids homeostasis, preventing liver fibrosis, and alleviating liver inflammation. Our present study helps to pave the way to therapeutic approaches of the treatment of PA-induced liver injury in clinics.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Alcaloides de Pirrolicidina , Ursidae , Animales , Bilis , Ácidos y Sales Biliares , Células Endoteliales/metabolismo , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/tratamiento farmacológico , Enfermedad Veno-Oclusiva Hepática/patología , Inflamación/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Ratones , Polvos , Alcaloides de Pirrolicidina/efectos adversos
12.
Arch Toxicol ; 96(7): 2003-2019, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357534

RESUMEN

Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Trombospondina 1 , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/metabolismo , Enfermedad Veno-Oclusiva Hepática/patología , Humanos , Ratones , Proteómica , Alcaloides de Pirrolicidina/toxicidad , Trombospondina 1/biosíntesis , Trombospondina 1/genética
13.
J Clin Transl Hepatol ; 9(3): 345-352, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34221920

RESUMEN

BACKGROUND AND AIMS: Hepatic sinusoidal obstruction syndrome (HSOS) is caused by toxic injury to sinusoidal endothelial cells in the liver. The intake of pyrrolizidine alkaloids (PAs) in some Chinese herbal remedies/plants remains the major etiology for HSOS in China. Recently, new diagnostic criteria for PA-induced HSOS (i.e. PA-HSOS) have been developed; however, the efficacy has not been clinically validated. This study aimed to assess the performance of the Nanjing criteria for PA-HSOS. METHODS: Data obtained from consecutive patients in multiple hospitals, which included 86 PA-HSOS patients and 327 patients with other liver diseases, were retrospectively analyzed. Then, the diagnostic performance of the Nanjing criteria and simplified Nanjing criteria were evaluated and validated. The study is registered in www.chictr.org.cn (ID: ChiCTR1900020784). RESULTS: The Nanjing criteria have a sensitivity and specificity of 95.35% and 100%, respectively, while the simplified Nanjing criteria have a sensitivity and specificity of 96.51% and 96.33%, respectively, for the diagnosis of PA-HSOS. Notably, a proportion of patients with Budd-Chiari syndrome (11/49) was misdiagnosed as PA-HSOS on the basis of the simplified Nanjing criteria, and this was mainly due to the overlapping features in the enhanced computed tomography/magnetic resonance imaging examinations. Furthermore, most of these patients (10/11) had occlusion or thrombosis of the hepatic vein, and communicating vessels in the liver were found in 8/11 patients, which were absent in PA-HSOS patients. CONCLUSIONS: The Nanjing criteria and simplified Nanjing criteria exhibit excellent performance in diagnosing PA-HSOS. Thus, both could be valuable diagnostic tools in clinical practice.

14.
Front Pharmacol ; 12: 627126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679405

RESUMEN

Background and Aims: The Gynura japonica-induced hepatic sinusoidal obstruction syndrome (HSOS) is closely related to pyrrolizidine alkaloids (PAs), and its prevalence has been increasing worldwide in recent years. However, no effective therapy for PA-induced HSOS in clinics is available, partially due to the failure of quick diagnosis. This study aims to identify blood microRNA (miRNA) signatures as potential biomarkers for PA-induced HSOS in clinics. Methods: The microarray-based miRNA profiling was performed on blood samples of the discovery cohort, which consisted of nine patients with HSOS and nine healthy donors. Differentially expressed miRNAs were further confirmed using a validation cohort, which consisted of 20 independent patients with HSOS. In addition, the rat model was established through the oral administration of the total alkaloid extract from G. japonica to investigate the association of miRNA biomarkers with the progression of HSOS. Bioinformatic analyses, including GO and KEGG enrichment, receiver operating characteristics curve, and correlation analyses were conducted to evaluate the accuracy of the potential miRNA biomarkers. Results: Three miRNAs, namely miR-148a-3p, miR-362-5p, and miR-194-5p, were overexpressed in patients and rats with PA-induced HSOS. These miRNAs were positively related to the severity of liver injury and displayed considerable diagnostic accuracy for patients with HSOS with areas under the curve over 0.87. Conclusion: In summary, this study demonstrated that three miRNAs, hsa-miR-148a-3p, hsa-miR-362-5p, and hsa-miR-194-5p, might serve as potential biomarkers for PA-induced HSOS in clinics.

15.
Int J Mol Med ; 47(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33576459

RESUMEN

Tumor necrosis factor­α (TNF­α) has different effects on apoptosis depending on activation or inactivation of the nuclear factor­κB (NF­κB) and epidermal growth factor receptor (EGFR) signaling pathways. Helichrysetin, a natural chalcone, inhibits NF­κB nuclear translocation in mouse pancreatic ß cells. The present study aimed to identify the effect of helichrysetin on activation of the NF­κB and EGFR signaling pathways induced by TNF­α, and the synergistic effect of helichrysetin and TNF­α on apoptosis of HeLa and T98G cells. Cell proliferation was measured by Cell Counting Kit­8 assay, while apoptosis was measured by Hoechst 33258 and Annexin V/PI staining. NF­κB activity was detected by luciferase assay, protein expression was measured by western blotting and mRNA expression was detected by quantitative PCR assay. The results revealed that in HeLa and T98G cells helichrysetin blocked the increased phosphorylation of NF­κB p65 induced by TNF­α. Although helichrysetin alone decreased cell viability, helichrysetin and TNF­α synergistically decreased cell viability. Helichrysetin, not TNF­α, promoted apoptosis, while the combination of helichrysetin and TNF­α synergistically increased apoptosis. In addition, helichrysetin and TNF­α synergistically enhanced the activation of caspase­3 and poly­(ADP­ribose)­polymerase compared with helichrysetin alone. Helichrysetin inhibited the phosphorylation of transforming growth factor­ß activated kinase (TAK1), IκB kinase­α/ß (IKK­α/ß), NF­κB p65 and EGFR induced by TNF­α. Consistent with the inhibition of NF­κB activation, the increased TNF­α­induced mRNA expression levels of TNF­α, IL­1ß, CCL2, CCL5 and CXCL10 were significantly downregulated by helichrysetin. Therefore, helichrysetin and TNF­α synergistically promoted apoptosis by inhibiting TAK1/IKK/NF­κB and TAK1/EGFR signaling pathways in HeLa and T98G cells, indicating a potential therapeutic strategy for cancer.


Asunto(s)
Chalcona/análogos & derivados , FN-kappa B/metabolismo , Apoptosis/efectos de los fármacos , Chalcona/farmacología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
16.
Food Chem ; 334: 127472, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32721831

RESUMEN

Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with severe liver damage if excessive ingestion. Herein, a novel analytical strategy on utilizing direct analysis in real-time mass spectrometry (DART-MS) was developed, and applied in analysis of six representative PAs. The calibration curves in the range of 10-1000 ng·mL-1 were established, and relative standard deviations (RSDs) were less than 10%. The limits of detection (LODs) and limits of quantitation (LOQs) were 0.55-0.85 ng·mL-1 and 1.83-2.82 ng·mL-1, respectively. The feasibility of method was indicated by analysing real samples including Gynura japonica, drug tablets, granules, and fresh cow's milk. Moreover, the results of DART-MS were in good agreement with those observed by high performance liquid chromatography mass spectrometry (HPLC-MS), but consumed less time without chromatographic separation. This research provides a facile fashion for safety assessment of herbal and food products containing PAs and presents promising applications in food, pharmaceutical and clinical analysis.


Asunto(s)
Contaminación de Alimentos/análisis , Espectrometría de Masas/métodos , Preparaciones de Plantas/análisis , Alcaloides de Pirrolicidina/análisis , Animales , Asteraceae/química , Calibración , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Análisis de los Alimentos/métodos , Límite de Detección , Leche/química
17.
Toxicon ; 186: 4-11, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32687888

RESUMEN

Pyrrolizidine alkaloids (PAs) are natural toxins found in about 3%-5% of flowering plants. Dehydropyrrolizidine alkaloids contain a double bond in 1, 2-position of the necine bases, including retronecine type PAs (RET-PAs) and their N-oxides (RET N-oxide-PAs), and otonecine type PAs (OTO-PAs), and are known for their significant hepatotoxicity. Most dehydropyrrolizidine alkaloids are metabolically activated by cytochrome P450 (CYP450) enzymes to generate active pyrroles, which further bind to proteins to form pyrrole-protein adducts (PPAs). Methods for predicting PA-induced liver injury are generally performed on in vitro models with extremely low activities of CYP450 enzymes, which is different from the situation in vivo. In this regard, primary cultured mouse hepatocytes, which showed comparable CYP450 activity with the in vivo models, were applied to illustrate the structure-toxicity relationship of 13 dehydropyrrolizidine alkaloids, namely, eight RET-PAs, three RET N-oxide-PAs, and two OTO-PAs. PA-induced cytotoxicity and PA-generated PPAs were analyzed in primary mouse hepatocytes treated with different PAs. Results showed that PA-induced toxicity was correlated with the amount of PA-generated PPAs. RET-PAs and OTO-PAs were generally more toxic than RET N-oxide-PAs and generated higher amount of PPAs. PPAs were utilized to evaluate the efficiency of metabolic activation and predict the toxic potencies of dehydropyrrolizidine alkaloids. The proposed model could be a new approach for toxicity evaluation and risk control of exposure to PAs.


Asunto(s)
Alcaloides de Pirrolicidina/toxicidad , Activación Metabólica , Alcaloides , Animales , Hepatocitos , Ratones , Proteínas/química , Alcaloides de Pirrolicidina/química
18.
J Appl Toxicol ; 40(11): 1534-1544, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32618019

RESUMEN

Herbal drug-induced liver injury has been reported worldwide and gained global attention. Thousands of hepatic sinusoidal obstruction syndrome (HSOS) cases have been reported after consumption of herbal medicines and preparations containing pyrrolizidine alkaloids (PAs), which are natural phytotoxins globally distributed. And herbal medicines, such as Gynura japonica, are the current leading cause of PA-induced HSOS. The present study aimed to reveal the mechanism underlying the hepatotoxicity of seneciphylline (Seph), a main PA in G. japonica. Results showed that Seph induced severe liver injury through apoptosis in mice (70 mg/kg Seph, orally) and primary mouse and human hepatocytes (5-50 µM Seph). Further research uncovered that Seph induced apoptosis by disrupting mitochondrial homeostasis, inducing mitochondrial depolarization, mitochondrial membrane potential (MMP) loss, and cytochrome c (Cyt c) release and activating c-Jun N-terminal kinase (JNK). The Seph-induced apoptosis in hepatocytes could be alleviated by Mdivi-1 (50 µM, a dynamin-related protein 1 inhibitor), as well as SP600125 (25 µM, a specific JNK inhibitor) and ZVAD-fmk (50 µM, a general caspase inhibitor). Moreover, the Seph-induced MMP loss in hepatocytes was also rescued by Mdivi-1. In conclusion, Seph induced liver toxicity via activating mitochondrial-mediated apoptosis in mice and primary hepatocytes. Our results provide further information on Seph detoxification and herbal medicines containing Seph such as G. japonica.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Medicamentos Herbarios Chinos/toxicidad , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Alcaloides de Pirrolicidina/toxicidad , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromos c/metabolismo , Dinaminas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Cultivo Primario de Células , Transducción de Señal
19.
Zhongguo Zhong Yao Za Zhi ; 45(1): 92-97, 2020 Jan.
Artículo en Chino | MEDLINE | ID: mdl-32237416

RESUMEN

Pyrrolizidine alkaloids(PAs) are a kind of natural toxins, which can cause severe hepatotoxicity, pulmonary toxicity, genotoxicity, neurotoxicity, embryotoxicity and even death. Therefore, international organizations and countries such as World Health Organization have paid great attention to herbal medicines and preparations containing PAs. PAs are widely distributed in Chinese herb medicines and contained in hundreds of traditional Chinese medicine preparations. The content of adonifoline, the main PAs in Senecionis Scandentis Herba, shall be less than 0.004% in herbal medicines as described in Chinese pharmacopeia. However, there is no guidance in preparations which contain Senecionis Scandentis Herba. In this study, 14 preparations were analyzed by an UPLC-MS method. Among them, 8 preparations were found to contain adonifoline much higher than the content limits of such countries as Germany, Netherlands and New Zealand. And the highest contents of adonifoline were found in Qianbai Biyan Tablets and Qianbai Biyan Capsules, which are officially recorded in Chinese Pharmacopeia. The contents of adonifoline varied in different batches of the same preparations. The highest content was 156.10 µg·g~(-1) Qianbai Biyan Tablets, whose daily intake of adonifoline was up to 1 030.26 µg according to the recommended dosage of the preparation. Our results showed the potential risk of these preparations, and the content limit of adonifoline shall be inspected Chinese medicine preparations containing Senecionis Scandentis Herba.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Lactonas/análisis , Alcaloides de Pirrolicidina/análisis , Senecio/química , Cromatografía Liquida , Medicamentos Herbarios Chinos/normas , Medicina Tradicional China , Espectrometría de Masas en Tándem
20.
Toxicol Lett ; 323: 41-47, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982501

RESUMEN

Gynura japonica (also named Tusanqi in Chinese) is used as a folk herbal medicine for treating blood stasis or traumatic injury. However, hundreds of hepatic sinusoidal obstruction syndrome (HSOS) cases have been reported after consumption of preparations made from G. japonica because it contains large amounts of hepatotoxic pyrrolizidine alkaloids (PAs). To date, blood pyrrole-protein adducts (PPAs) are suggested as biomarkers for the diagnosis of PA-induced HSOS in clinics. However, the concentration of PPAs in the blood is greatly affected by several factors including the amount of PA exposure, herb intake period, and blood sampling time after the last exposure. In present study, the kinetic characters of PPAs in serum and liver as well as other potential target organs were studied systematically and comprehensively following multiple exposures of PAs in G. japonica extract (GJE). As results, PPAs content reached to a plateau both in serum and liver after the mice were treated with GJE for 2 weeks on daily basis. PPAs cleared significantly slower in liver (T1/2ke∼184.6 h, ∼7.7 days) than in serum (T1/2ke∼95.8 h, ∼4.0 days). Although more than 90 % PPAs were removed 2 weeks after the last dosing, PPAs still persisted in the liver until the end of the experiment, i.e. 8 weeks after the last dosing. The results would be of great help for understanding the importance of PPAs for PA-induced toxicity and its detoxification.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Pirroles/metabolismo , Alcaloides de Pirrolicidina/farmacocinética , Animales , Medicamentos Herbarios Chinos/toxicidad , Cinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/análisis , Extractos Vegetales/toxicidad , Alcaloides de Pirrolicidina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...