Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 345: 122553, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227095

RESUMEN

The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.


Asunto(s)
Ivermectina , Mariposas Nocturnas , Rayos Ultravioleta , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Ivermectina/toxicidad , Animales , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Celulosa/química , Celulosa/análogos & derivados , Derivados de la Hipromelosa/química , Concentración de Iones de Hidrógeno , Liberación de Fármacos
2.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38547360

RESUMEN

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Asunto(s)
Lignina , Plaguicidas , Estrobilurinas , Animales , Lignina/química , Plaguicidas/farmacología , Cápsulas/química , Emulsiones/química , Pez Cebra , Agua
3.
J Control Release ; 367: 837-847, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346502

RESUMEN

Strawberry anthracnose (Colletotrichum gloeosporioides) exhibits a high pathogenicity, capable of directly infecting leaves through natural openings, resulting in devastating impacts on strawberries. Here, nanocomposite (CuS@Cu-MOF) was prepared with a high photothermal conversion efficiency of 35.3% and a strong response to near-infrared light (NIR) by locally growing CuS nanoparticles on the surface of a copper-based metal-organic framework (Cu-MOF) through in situ sulfurization. The porosity of Cu-MOF facilitated efficient encapsulation of the pesticide difenoconazole within CuS@Cu-MOF (DIF/CuS@Cu-MOF), achieving a loading potential of 19.18 ± 1.07%. Under NIR light irradiation, DIF/CuS@Cu-MOF showed an explosive release of DIF, which was 2.7 times higher than that under dark conditions. DIF/CuS@Cu-MOF exhibited a 43.9% increase in efficacy against C. gloeosporioides compared to difenoconazole microemulsion (DIF ME), demonstrating prolonged effectiveness. The EC50 values for DIF and DIF/CuS@Cu-MOF were 0.219 and 0.189 µg/mL, respectively. Confocal laser scanning microscopy demonstrated that the fluorescently labeled CuS@Cu-MOF acted as a penetrative carrier for the uptake of hyphae. Furthermore, DIF/CuS@Cu-MOF exhibited more substantial resistance to rainwater wash-off than DIF ME, with retention levels on the surfaces of cucumber leaves (hydrophilicity) and peanut leaves (hydrophobicity) increasing by 36.5-fold and 9.4-fold, respectively. These findings underscore the potential of nanocomposite to enhance pesticide utilization efficiency and leaf retention.


Asunto(s)
Fragaria , Nanopartículas , Plaguicidas , Cobre , Rayos Infrarrojos
4.
Small ; 20(8): e2305693, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828638

RESUMEN

The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.


Asunto(s)
Plaguicidas , Solanum lycopersicum , Dextranos , Plantas
5.
Carbohydr Polym ; 291: 119576, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698394

RESUMEN

Dextran has emerged as a promising biopolymer carrier for controlled release formulations of pesticides. In this study, pH-sensitive acetalated dextran microparticles (Pyr@Ac-Dex) are prepared to encapsulate and control the release of pyraclostrobin (Pyr). In vitro fungicidal activity experiments showed that the prepared Pyr@Ac-Dex particles show comparable fungicidal ability against S. sclerotiorum compared to that of Pyr technical. In a 10-day pot experiment, the control efficacy of the Pyr@Ac-Dex treatment against S. sclerotiorum (77.1%) is significantly higher than that of Pyr emulsifiable concentrate (Pyr EC) treatment (42.4%). Photodegradation experiments show that compared to Pyr technical, Pyr@Ac-Dex doubles the half-life of Pyr in water. Acute toxicity experiments show that Pyr@Ac-Dex significantly reduced the acute exposure toxicity of Pyr to zebrafish. This study provides an environmentally friendly, feasible, and sustainable strategy for plant disease management.


Asunto(s)
Ascomicetos , Dextranos , Animales , Preparaciones de Acción Retardada , Estrobilurinas , Pez Cebra
6.
ACS Nano ; 16(2): 2762-2773, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35135193

RESUMEN

Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.


Asunto(s)
Berberina , Nanosferas , Ralstonia solanacearum , Óxido de Zinc , Bacterias , Berberina/farmacología , Concentración de Iones de Hidrógeno , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Óxido de Zinc/farmacología
7.
ACS Nano ; 15(4): 6987-6997, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33856774

RESUMEN

Using a simple one-pot method, we developed a prochloraz (Pro) and pH-jump reagent-loaded zeolitic imidazolate framework-8 (PD@ZIF-8) composite for the smart control of Sclerotinia disease. The pH-jump reagent can induce the acidic degradation of ZIF-8 using UV light to realize the controlled release of Pro. Thus, the physical properties of PD@ZIF-8, such as its release, formulation stability, and adhesion, were investigated in detail. The results showed that the quantity of Pro released by PD@ZIF-8 under UV light irradiation (365 nm) was 63.4 ± 3.5%, whereas under dark conditions, it was only 13.7 ± 0.8%. In vitro activity indicated that the EC50 of PD@ZIF-8 under UV light irradiation was 0.122 ± 0.02 µg/mL, which was not significantly different from that of Pro (0.107 ± 0.01 µg/mL). Pot experiments showed that the efficacy of PD@ZIF-8 under light irradiation was 51.2 ± 5.7% for a fungal infection at 14 days post-spraying, whereas the effectiveness of prochloraz emulsion in water was only 9.3 ± 3.3%. Furthermore, fluorescence tracking of ZIF-8 and biosafety experiments showed that ZIF-8 could be absorbed by plant leaves and transported to various parts of oilseed rape in a short period of time and that PD@ZIF-8 was relatively safe for plants and HepG2 cells. These results highlight the potential of the composite to provide efficient and smart delivery of fungicides into plants for protection against diseases and provide an idea for developing sustainable agriculture.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Estructuras Metalorgánicas , Zeolitas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...