Asunto(s)
Lesión Pulmonar , Sepsis , Humanos , Lesión Pulmonar/etiología , Antígenos CD , Cadherinas/genética , Sepsis/complicacionesRESUMEN
Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.
Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19/prevención & control , Ingeniería de Proteínas , SARS-CoV-2 , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Antivirales , Descubrimiento de Drogas , Humanos , Lesión Pulmonar , Ratones , Ratones Transgénicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Síndrome de Dificultad Respiratoria , Síndrome Respiratorio Agudo GraveRESUMEN
[Figure: see text].
Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/fisiopatología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Receptores de Interleucina-1/fisiología , Animales , Antígenos CD/metabolismo , COVID-19/complicaciones , Cadherinas/metabolismo , Permeabilidad Capilar , Caspasa 1/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Edema/fisiopatología , Edema/prevención & control , Endotelio Vascular/efectos de los fármacos , Activación Enzimática , Fibrosis/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos/fisiología , Circulación Pulmonar , Receptores de Interleucina-1/antagonistas & inhibidores , SARS-CoV-2 , Transducción de Señal/efectos de los fármacosRESUMEN
Vaccine hesitancy and continuing emergence of SARS-CoV-2 variants of concern that may escape vaccine-induced immune responses highlight the urgent need for effective COVID-19 therapeutics. Monoclonal antibodies used in the clinic have varying efficacies against distinct SARS-CoV-2 variants; thus, there is considerable interest in engineered ACE2 peptides with augmented binding affinities for SARS-CoV-2 Spike protein. These could have therapeutic benefit against multiple viral variants. Using molecular dynamics simulations, we show how three amino acid substitutions in an engineered soluble ACE2 peptide (sACE2 2 .v2.4-IgG1) markedly increase affinity for the SARS-CoV-2 Spike (S) protein. We demonstrate high binding affinity to S protein of the early SARS-CoV-2 WA-1/2020 isolate and also to multiple variants of concern: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) SARS-CoV-2 variants. In humanized K18-hACE2 mice, prophylactic and therapeutic administration of sACE2 2 .v2.4-IgG1 peptide prevented acute lung vascular endothelial injury and lung edema (essential features of ARDS) and significantly improved survival after infection by SARS-CoV-2 WA-1/2020 as well as P.1 variant of concern. These studies demonstrate for the first time broad efficacy in vivo of an ACE2 decoy peptide against multiple SARS-CoV-2 variants and point to its therapeutic potential.
RESUMEN
Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture-induced (CLP-induced) polymicrobial sepsis decreased the expression of transcription factor cAMP response element binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1ß reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits type 4 cyclic nucleotide phosphodiesterase-mediated (PDE4-mediated) hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of the endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.
Asunto(s)
Antígenos CD/biosíntesis , Cadherinas/biosíntesis , Endotelio Vascular/metabolismo , Interleucina-1beta/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Sepsis/metabolismo , Transcripción Genética , Animales , Antígenos CD/genética , Cadherinas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Endotelio Vascular/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/genética , Ratones , Ratones Noqueados , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/patología , Sepsis/genética , Sepsis/patologíaRESUMEN
Cytosolic DNA acts as a universal danger-associated molecular pattern (DAMP) signal; however, the mechanisms of self-DNA release into the cytosol and its role in inflammatory tissue injury are not well understood. We found that the internalized bacterial endotoxin lipopolysaccharide (LPS) activated the pore-forming protein Gasdermin D, which formed mitochondrial pores and induced mitochondrial DNA (mtDNA) release into the cytosol of endothelial cells. mtDNA was recognized by the DNA sensor cGAS and generated the second messenger cGAMP, which suppressed endothelial cell proliferation by downregulating YAP1 signaling. This indicated that the surviving endothelial cells in the penumbrium of the inflammatory injury were compromised in their regenerative capacity. In an experimental model of inflammatory lung injury, deletion of cGas in mice restored endothelial regeneration. The results suggest that targeting the endothelial Gasdermin D activated cGAS-YAP signaling pathway could serve as a potential strategy for restoring endothelial function after inflammatory injury.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , ADN Mitocondrial/genética , Células Endoteliales/metabolismo , Inflamación/genética , Nucleotidiltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Células Endoteliales/citología , Células HEK293 , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAPRESUMEN
Disruption of alveolar-capillary barriers is a major complication of high-volume mechanical ventilation referred to as "ventilator-induced lung injury." The stretching force in alveoli is transmitted to endothelial cells, increasing the tension on underlying endothelial plasma membrane. The mechanosensor Piezo1, a plasma membrane cation channel, was inducibly deleted in endothelial cells of mice (Piezo1iEC-/-), which allowed us to study its role in regulating the endothelial barrier response to alveolar stretch. We observed significant increase in lung vascular permeability in Piezo1iEC-/- mice as compared with control Piezo1fl/fl mice in response to high-volume mechanical ventilation. We also observed that human lung endothelial monolayers depleted of Piezo1 and exposed to cyclic stretch had increased permeability. We identified the calcium-dependent cysteine protease calpain as a downstream target of Piezo1. Furthermore, we showed that calpain maintained stability of the endothelial barrier in response to mechanical stretch by cleaving Src kinase, which was responsible for disassembling endothelial adherens junctions. Pharmacological activation of calpain caused Src cleavage and thereby its inactivation, and it restored the disrupted lung endothelial barrier seen in Piezo1iEC-/- mice undergoing high-volume mechanical ventilation. Our data demonstrate that downregulation of Piezo1 signaling in endothelium is a critical factor in the pathogenesis of ventilator-induced lung injury, and thus augmenting Piezo1 expression or pharmacologically activating Piezo1 signaling may be an effective therapeutic strategy.
Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Pulmón/metabolismo , Animales , Permeabilidad Capilar/efectos de los fármacos , Membrana Celular/metabolismo , Endotelio Vascular/metabolismo , Ratones , Alveolos Pulmonares/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismoRESUMEN
Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary "stress failure" that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC ), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, ß-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.
Asunto(s)
Endotelio Vascular/patología , Canales Iónicos/metabolismo , Microvasos/patología , Edema Pulmonar/patología , Insuficiencia Respiratoria/patología , Uniones Adherentes/patología , Uniones Adherentes/ultraestructura , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/ultraestructura , Femenino , Técnicas de Sustitución del Gen , Humanos , Presión Hidrostática/efectos adversos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Pulmón/irrigación sanguínea , Masculino , Mecanotransducción Celular , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microvasos/citología , Microvasos/efectos de los fármacos , Cultivo Primario de Células , Edema Pulmonar/etiología , Edema Pulmonar/fisiopatología , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/prevención & control , Venenos de Araña/farmacologíaRESUMEN
Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.
Asunto(s)
Ciclina E/genética , Endotelio Vascular/fisiopatología , Endotoxemia/patología , Proteínas HMGB/metabolismo , Proteínas Oncogénicas/genética , Regeneración/inmunología , Factores de Transcripción SOXF/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Ciclina E/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Endotoxemia/inmunología , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/fisiología , Regulación hacia ArribaRESUMEN
Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.
Asunto(s)
Inflamasomas/metabolismo , Inflamación/fisiopatología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Caspasa 1/deficiencia , Caspasa 1/metabolismo , Línea Celular , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Quinina/farmacología , ARN Interferente Pequeño/farmacología , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/metabolismo , Sepsis/metabolismo , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacosRESUMEN
Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.
Asunto(s)
Caspasas/fisiología , Células Endoteliales/enzimología , Endotoxemia/enzimología , Lesión Pulmonar/enzimología , Piroptosis , Animales , Estudios de Casos y Controles , Caspasas Iniciadoras , Células Cultivadas , Endotelio Vascular/patología , Endotoxemia/inmunología , Femenino , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Pulmón/enzimología , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 4/metabolismoRESUMEN
Cellular senescence and organismal aging predispose age-related chronic diseases, such as neurodegenerative, metabolic, and cardiovascular disorders. These diseases emerge coincidently from elevated oxidative/electrophilic stress, inflammation, mitochondrial dysfunction, DNA damage, and telomere dysfunction and shortening. Mechanistic linkages are incompletely understood. Here, we show that ablation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) accelerates vascular aging and atherosclerosis, coinciding with telomere dysfunction and shortening and DNA damage. PGC-1α deletion reduces expression and activity of telomerase reverse transcriptase (TERT) and increases p53 levels. Ectopic expression of PGC-1α coactivates TERT transcription and reverses telomere malfunction and DNA damage. Furthermore, alpha lipoic acid (ALA), a non-dispensable mitochondrial cofactor, upregulates PGC-1α-dependent TERT and the cytoprotective Nrf-2-mediated antioxidant/electrophile-responsive element (ARE/ERE) signaling cascades, and counteracts high-fat-diet-induced, age-dependent arteriopathy. These results illustrate the pivotal importance of PGC-1α in ameliorating senescence, aging, and associated chronic diseases, and may inform novel therapeutic approaches involving electrophilic specificity.
Asunto(s)
Aterosclerosis/genética , Vasos Sanguíneos/crecimiento & desarrollo , Daño del ADN , Acortamiento del Telómero , Factores de Transcripción/genética , Animales , Elementos de Respuesta Antioxidante , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Ácido Tióctico/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND: Clinical studies show that metformin attenuates allcause mortality and myocardial infarction compared with other medications for type 2 diabetes, even at similar glycemic levels. However, there is paucity of data in the euglycemic state on the vasculoprotective effects of metformin. The objectives of this study are to evaluate the effects of metformin on ameliorating atherosclerosis. METHODS AND RESULTS: Using ApoE−/− C57BL/6J mice, we found that metformin attenuates atherosclerosis and vascular senescence in mice fed a highfat diet and prevents the upregulation of angiotensin II type 1 receptor by a highfat diet in the aortas of mice. Thus, considering the known deleterious effects of angiotensin II mediated by angiotensin II type 1 receptor, the vascular benefits of metformin may be mediated, at least in part, by angiotensin II type 1 receptor downregulation. Moreover, we found that metformin can cause weight loss without hypoglycemia. We also found that metformin increases the antioxidant superoxide dismutase1. CONCLUSION: Pleiotropic effects of metformin ameliorate atherosclerosis and vascular senescence.
Asunto(s)
Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Fármacos Cardiovasculares/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Pérdida de Peso/efectos de los fármacosRESUMEN
OBJECTIVE: Cellular senescence influences organismal aging and increases predisposition to age-related diseases, in particular cardiovascular disease, a leading cause of death and disability worldwide. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and function, oxidative stress, and insulin resistance. Senescence is associated with telomere and mitochondrial dysfunction and oxidative stress, implying a potential causal role of PGC-1α in senescence pathogenesis. APPROACH AND RESULTS: We generated a PGC-1α(+/-)/apolipoprotein E(-/-) mouse model and showed that PGC-1α deficiency promotes a vascular senescence phenotype that is associated with increased oxidative stress, mitochondrial abnormalities, and reduced telomerase activity. PGC-1α disruption results in reduced expression of the longevity-related deacetylase sirtuin 1 (SIRT1) and the antioxidant catalase, and increased expression of the senescence marker p53 in aortas. Further, angiotensin II, a major hormonal inducer of vascular senescence, induces prolonged lysine acetylation of PGC-1α and releases the PGC-1α-FoxO1 complex from the SIRT1 promoter, thus reducing SIRT1 expression. The phosphorylation-defective mutant PGC-1α S570A is not acetylated, is constitutively active for forkhead box O1-dependent SIRT1 transcription, and prevents angiotensin II-induced senescence. Acetylation of PGC-1α by angiotensin II interrupts the PGC-1α-forkhead box O1-SIRT1 feed-forward signaling circuit leading to SIRT1 and catalase downregulation and vascular senescence. CONCLUSIONS: PGC-1α is a primary negative regulator of vascular senescence. Moreover, the central role of posttranslational modification of PGC-1α in regulating angiotensin II-induced vascular senescence may inform development of novel therapeutic strategies for mitigating age-associated diseases, such as atherosclerosis.
Asunto(s)
Senescencia Celular , Músculo Liso Vascular/citología , Transactivadores/fisiología , Acetilación , Angiotensina II/farmacología , Animales , Catalasa/análisis , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/análisis , Sirtuina 1/genética , Telomerasa/metabolismo , Factores de TranscripciónRESUMEN
Akt/protein kinase B (PKB) activation/phosphorylation by angiotensin II (Ang II) is a critical signaling event in hypertrophy of vascular smooth muscle cells (VSMCs). Conventional wisdom asserts that Akt activation occurs mainly in plasma membrane domains. Recent evidence that Akt activation may take place within intracellular compartments challenges this dogma. The spatial identity and mechanistic features of these putative signaling domains have not been defined. Using cell fractionation and fluorescence methods, we demonstrate that the early endosomal antigen-1 (EEA1)-positive endosomes are a major site of Ang II-induced Akt activation. Akt moves to and is activated in EEA1 endosomes. The expression of EEA1 is required for phosphorylation of Akt at both Thr-308 and Ser-473 as well as for phosphorylation of its downstream targets mTOR and S6 kinase, but not for Erk1/2 activation. Both Akt and phosphorylated Akt (p-Akt) interact with EEA1. We also found that PKC-α is required for organizing Ang II-induced, EEA1-dependent Akt phosphorylation in VSMC early endosomes. EEA1 expression enables PKC-α phosphorylation, which in turn regulates Akt upstream signaling kinases, PDK1 and p38 MAPK. Our results indicate that PKC-α is a necessary regulator of EEA1-dependent Akt signaling in early endosomes. Finally, EEA1 down-regulation or expression of a dominant negative mutant of PKC-α blunts Ang II-induced leucine incorporation in VSMCs. Thus, EEA1 serves a novel function as an obligate scaffold for Ang II-induced Akt activation in early endosomes.
Asunto(s)
Angiotensina II/farmacología , Endosomas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vasoconstrictores/farmacología , Proteínas de Transporte Vesicular/biosíntesis , Animales , Células Cultivadas , Endosomas/genética , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína Quinasa C-alfa/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Forkhead transcription factor FoxO1 and the NAD(+)-dependent histone deacetylase SIRT1 are evolutionarily conserved regulators of the development of aging, oxidative stress resistance, insulin resistance, and metabolism in species ranging from invertebrates to mammals. SIRT1 deacetylates FoxO1 and enables activation of FoxO1 transcription in multiple systems. The functional consequences of the interactions between FoxO1 and SIRT1 remain incompletely understood. Here, we demonstrate that the 1.5-kb rat sirt1 promoter region contains a cluster of five putative FoxO1 core binding repeat motifs (5×IRS-1) and a forkhead-like consensus binding site (FKHD-L). Luciferase promoter assays demonstrate that FoxO1 directly activates SIRT1 promoter activity and that both the IRS-1 and FKHD-L enable FoxO1-dependent SIRT1 transcription. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that FoxO1 binds to the IRS-1 and FKHD-L sites of the SIRT1 promoter. Consistently, FoxO1 overexpression increases SIRT1 expression, and FoxO1 depletion by siRNA reduces SIRT1 expression at both the messenger RNA and protein levels in vascular smooth muscle cells and HEK293 cells. Thus, endogenous FoxO1 is a positive transcriptional regulator of SIRT1. Conversely, SIRT1 promotes FoxO1-driven SIRT1 autotranscription through interacting with and deacetylating FoxO1. Moreover, resveratrol, a plant polyphenol activator of SIRT1, increases FoxO1-dependent SIRT1 transcription activity and thus induces its expression. These findings suggest that positive feedback mechanisms regulate FoxO1-dependent SIRT1 transcription and indicate a previously unappreciated function for FoxO1. This signaling network may coordinate multiple pathways acting upon immune, inflammatory, regenerative, and metabolic processes.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Elementos de Respuesta/fisiología , Sirtuina 1/biosíntesis , Transcripción Genética/fisiología , Animales , Inhibidores Enzimáticos/farmacología , Factores de Transcripción Forkhead/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/genética , Ratas , Resveratrol , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirtuina 1/genética , Estilbenos/farmacología , Transcripción Genética/efectos de los fármacosRESUMEN
Angiotensin II (Ang II) is a pleuripotential hormone that is important in the pathophysiology of multiple conditions including aging, cardiovascular and renal diseases, and insulin resistance. Reactive oxygen species (ROS) are important mediators of Ang II-induced signaling generally and have a well defined role in vascular hypertrophy, which is inhibited by overexpression of catalase, inferring a specific role of H(2)O(2). The molecular mechanisms are understood incompletely. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a key regulator of energy metabolism and ROS-scavenging enzymes including catalase. We show that Ang II stimulates Akt-dependent PGC-1 alpha serine 570 phosphorylation, which is required for the binding of the histone acetyltransferase GCN5 (general control nonderepressible 5) to PGC-1 alpha and for its lysine acetylation. These sequential post-translational modifications suppress PGC-1 alpha activity and prevent its binding to the catalase promoter through the forkhead box O1 transcription factor, thus decreasing catalase expression. We demonstrate that overexpression of the phosphorylation-defective mutant PGC-1 alpha (S570A) prevents Ang II-induced increases in H(2)O(2) levels and hypertrophy ([(3)H]leucine incorporation). Knockdown of PGC-1 alpha by small interfering RNA promotes basal and Ang II-stimulated ROS and hypertrophy, which is reversed by polyethylene glycol-conjugated catalase. Thus, endogenous PGC-1 alpha is a negative regulator of vascular hypertrophy by up-regulating catalase expression and thus reducing ROS levels. We provide novel mechanistic insights by which Ang II may mediate its ROS-dependent pathophysiologic effects on multiple cardiometabolic diseases.
Asunto(s)
Angiotensina II/metabolismo , Enfermedades Cardiovasculares/metabolismo , Catalasa/metabolismo , Músculo Liso Vascular/enzimología , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Angiotensina II/farmacología , Animales , Aorta Torácica/citología , Enfermedades Cardiovasculares/patología , Catalasa/genética , Células Cultivadas , Regulación hacia Abajo/fisiología , Factores de Transcripción Forkhead/metabolismo , Hipertrofia , Luciferasas/genética , Masculino , Músculo Liso Vascular/patología , Proteínas del Tejido Nervioso/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Regiones Promotoras Genéticas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley , Serina/metabolismo , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiologíaRESUMEN
Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings.
Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Interleucina/metabolismo , Animales , Células COS , Diferenciación Celular , Chlorocebus aethiops , Endocitosis , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Neuritas/enzimología , Neuritas/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Células PC12 , Fosforilación , Transporte de Proteínas , Ratas , Receptores de Interleucina/genética , Factores de Tiempo , TransfecciónRESUMEN
Alternative splicing produces functionally distinct proteins participating in cellular processes including differentiation and development. CoAA is a coactivator that regulates transcription-coupled splicing and its own pre-mRNA transcript is alternatively spliced. We show here that the CoAA gene is embryonically expressed and alternatively spliced in multiple tissues to three splice variants, CoAA, CoAM and CoAR. During retinoic-acid-induced P19 stem cell differentiation, the expression of CoAA undergoes a rapid switch to its dominant negative splice variant CoAM in the cavity of the embryoid body. CoAM functionally inhibits CoAA, and their switched expression up-regulates differentiation marker Sox6. Using a CoAA minigene cassette, we find that the switched alternative splicing of CoAA and CoAM is regulated by the cis-regulating sequence upstream of the CoAA basal promoter. Consistent to this, we show that p54(nrb) and PSF induce CoAM splice variant through the cis-regulating sequence. We have previously shown that the CoAA gene is amplified in human cancers with a recurrent loss of this cis-regulating sequence. These results together suggest that the upstream regulatory sequence contributes to alternative splicing of the CoAA gene during stem cell differentiation, and its selective loss in human cancers potentially deregulates CoAA alternative splicing and alters stem cell differentiation.
Asunto(s)
Empalme Alternativo , Células Madre Embrionarias/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Oncogénicas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Carcinoma Embrionario/genética , Carcinoma Embrionario/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/biosíntesis , Ratones , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Oncogénicas/metabolismo , Factor de Empalme Asociado a PTB , Proteínas de Unión al ARN/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción SOXD , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismoRESUMEN
sef (similar expression to fgf genes) was recently identified as a negative regulator of fibroblast growth factor (FGF) signaling in zebrafish, chicken, mouse and human. By repressing events upstream and/or downstream Ras, Sef inhibits FGF-induced ERK activation and cell proliferation. Here we report that Sef-S, an alternative splice isoform of Sef, lacks a signal peptide and is localized in cytosol. Sef-S inhibits FGF-induced NIH3T3 cell proliferation, a similar function to Sef. However, Sef-S represses neither the intensity nor the duration of ERK activation. Moreover, Sef-S does not inhibit Elk1-dependent transcription. Our study revealed that the signal peptide is critical for the different activities between Sef and Sef-S in FGF-Ras-MAPK signaling cascades. Furthermore, we observed that Sef-S associated with FGFR2 in a co-immunoprecipitated complex. These results indicate that Sef-S inhibits FGF-induced NIH3T3 cell proliferation via an ERK-independent mechanism and therefore suggest that alternative splice licenses sef gene to inhibit cell proliferation via multiple signaling pathways.