Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(18): 9931-9935, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33591574

RESUMEN

The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3  cm2 V-1 s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.

2.
Angew Chem Int Ed Engl ; 58(42): 14915-14919, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31356720

RESUMEN

Heterostructured metal-organic framework (MOF)-on-MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which overcomes the lattice-matching limits of reported methods, has been developed. The method deposits molecular sieving Cu-TCPP (TCPP=5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin) layers onto semiconductive Cu-HHTP (HHTP=2,3,6,7,10,11-hexahydrotriphenylene) layers to obtain highly oriented MOF-on-MOF thin films. For the first time, the properties in different MOF layers were cascaded in sequence to synergistically produce an enhanced device function. Cu-TCPP-on-Cu-HHTP demonstrated excellent selectivity and the highest response to benzene of the reported recoverable chemiresistive sensing materials that are active at room temperature. This method allows integration of MOFs with cascading properties into advanced functional materials.

3.
Chem Commun (Camb) ; 53(16): 2479-2482, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28180220

RESUMEN

Electrically bistable materials have important applications in memory, displays, switches, sensors, and quantum computation. This communication reports a metal-organic framework (MOF) material as a new type of electrically bistable material. Taking advantage of the flexible structure of MOF materials, the electrically bistable states of the MOF were reversibly modulated between its crystalline and amorphous phases. Interestingly, the material's amorphous phase exhibited anomalously higher conductivity than the crystalline phase. Our results illustrated a convenient method to develop electrically bistable materials from MOFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...