RESUMEN
BACKGROUND: Paragonimiasis, primarily caused by Paragonimus westermani and P. skrjabini in China, is a common food-borne parasitic zoonosis. However, the national distribution of Paragonimus spp. infection and its associated environmental determinants remain poorly understood. In this paper, we summarize the infection of P. westermani and P. skrjabini and describe key biogeographical characteristics of the endemic areas in China. METHODS: Data on Paragonimus infection in humans and animal hosts were extracted from eight electronic databases, including CNKI, CWFD, Chongqing VIP, SinoMed, Medline, Embase, PubMed, and Web of Science. A random-effects meta-analysis model was used to estimate the pooled prevalence. All survey locations were georeferenced and plotted on China map, and scatter plots were used to illustrate the biogeographical characteristics of regions reporting Paragonimus infection. RESULTS: A total of 28,948 cases of human paragonimiasis have been documented, with 2,401 cases reported after 2010. Among the 11,443 cases with reported ages, 88.05% were children or adolescents. The pooled prevalence of P. skrjabini is 0.45% (95% CI: 0.27-0.66%) in snails, 31.10% (95% CI: 24.77-37.80%) in the second intermediate host, and 20.31% (95% CI: 9.69-33.38%) in animal reservoirs. For P. westermani, the pooled prevalence is 0.06% (95% CI: 0.01-0.13%) in snails, 52.07% (95% CI: 43.56-60.52%) in the second intermediate host, and 21.40% (95% CI: 7.82-38.99%) in animal reservoirs. Paragonimus are primarily distributed in regions with low altitude, high temperature, and high precipitation. In northeastern China, only P. westermani infections have been documented, while in more southern areas, infections of both P. westermani and P. skrjabini have been reported. CONCLUSIONS: Paragonimiasis remains prevalent in China, particularly among children and adolescents. Variations exist in the intermediate hosts and geographical distribution of P. westermani and P. skrjabini. Additionally, altitude, temperature, and precipitation may influence the distribution of Paragonimus.
Asunto(s)
Paragonimiasis , Paragonimus , Animales , Paragonimiasis/epidemiología , Paragonimiasis/parasitología , Humanos , China/epidemiología , Paragonimus/aislamiento & purificación , Paragonimus/clasificación , Paragonimus/genética , Zoonosis/parasitología , Zoonosis/epidemiología , Prevalencia , NiñoRESUMEN
BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonosis caused by the SFTS virus (SFTSV). Understanding the prevalence of SFTSV RNA in humans, vertebrate hosts and ticks is crucial for SFTS control. METHODS: A systematic review and meta-analysis were conducted to determine the prevalence of SFTSV RNA in humans, vertebrate hosts and questing ticks. Nine electronic databases were searched for relevant publications, and data on SFTSV RNA prevalence were extracted. Pooled prevalence was estimated using a random effects model. Subgroup analysis and multivariable meta-regression were performed to investigate sources of heterogeneity. RESULTS: The pooled prevalence of SFTSV RNA in humans was 5.59% (95% confidence interval [CI] 2.78-9.15%) in those in close contact (close contacts) with infected individuals (infected cases) and 0.05% (95% CI 0.00-0.65%) in healthy individuals in endemic areas. The SFTSV infection rates in artiodactyls (5.60%; 95% CI 2.95-8.96%) and carnivores (6.34%; 95% CI 3.27-10.23%) were higher than those in rodents (0.45%; 95% CI 0.00-1.50%). Other animals, such as rabbits, hedgehogs and birds, also played significant roles in SFTSV transmission. The genus Haemaphysalis was the primary transmission vector, with members of Ixodes, Dermacentor, and Amblyomma also identified as potential vectors. The highest pooled prevalence was observed in adult ticks (1.03%; 95% CI 0.35-1.96%), followed by nymphs (0.66%; 95% CI 0.11-1.50%) and larvae (0.01%; 95% CI 0.00-0.46%). The pooled prevalence in ticks collected from endemic areas (1.86%; 95% CI 0.86-3.14%) was higher than that in ticks collected in other regions (0.41%; 95% CI 0.12-0.81%). CONCLUSIONS: Latent SFTSV infections are present in healthy individuals residing in endemic areas, and close contacts with SFTS cases are at a significantly higher risk of infection. The type of animal is linked to infection rates in vertebrate hosts, while infection rates in ticks are associated with the developmental stage. Further research is needed to investigate the impact of various environmental factors on SFTSV prevalence in vertebrate hosts and ticks.