Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016031

RESUMEN

Gallium nitride offers an ideal material platform for next-generation high-power electronics devices, which enable a spectrum of applications. The thermal management of the ever-growing power density has become a major bottleneck in the performance, reliability, and lifetime of the devices. GaN/diamond heterostructures are usually adopted to facilitate heat dissipation, given the extraordinary thermal conduction properties of diamonds. However, thermal transport is limited by the interfacial conductance at the material interface between GaN and diamond, which is associated with significant mechanical stress at the atomic level. In this work, we investigate the effect of mechanical strain perpendicular to the GaN/diamond interface on the interfacial thermal conductance of heterostructures using full-atom non-equilibrium molecular dynamics simulations. We found that the heterostructure exhibits severe mechanical stress at the interface in the absence of loading, which is due to lattice mismatch. Upon tensile/compressive loading, the interfacial stress is more pronounced, and the strain is not identical across the interface owing to the contrasting elastic moduli of GaN and diamond. In addition, the interfacial thermal conductance can be notably enhanced and suppressed by tensile and compressive strains, respectively, leading to a 400% variation in thermal conductance. More detailed analyses reveal that the change in interfacial thermal conductance is related to the surface roughness and interfacial bonding strength, as described by a generalized relationship. Moreover, phonon analyses suggest that the unequal mechanical deformation under compressive strain in GaN and diamond induces different frequency shifts in the phonon spectra, leading to an enhancement in phonon overlapping energy, which promotes phonon transport at the interface and elevates the thermal conductance and vice versa for tensile strain. The effect of strain on interface thermal conductance was investigated at various temperatures. Based on the mechanical tunability of thermal conductance, we propose a conceptual design for a mechanical thermal switch that regulates thermal conductance with excellent sensitivity and high responsiveness. This study offers a fundamental understanding of how mechanical strain can adjust interface thermal conductance in GaN/diamond heterostructures with respect to mechanical stress, deformation, and phonon properties. These results and findings lay the theoretical foundation for designing thermal management devices in a strain environment and shed light on developing intelligent thermal devices by leveraging the interplay between mechanics and thermal transport.

2.
ACS Appl Mater Interfaces ; 16(20): 26613-26623, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728055

RESUMEN

Strain gauges, particularly for wearable sensing applications, require a high degree of stretchability, softness, sensitivity, selectivity, and linearity. They must also steer clear of challenges such as mechanical and electrical hysteresis, overshoot behavior, and slow response/recovery times. However, current strain gauges face challenges in satisfying all of these requirements at once due to the inevitable trade-offs between these properties. Here, we present an innovative method for creating strain gauges from spongy Ag foam through a steam-etching process. This method simplifies the traditional, more complex, and costly manufacturing techniques, presenting an eco-friendly alternative. Uniquely, the strain gauges crafted from this method achieve an unparalleled gauge factor greater than 8 × 103 at strains exceeding 100%, successfully meeting all required attributes without notable trade-offs. Our work includes systematic investigations that reveal the intricate structure-property-performance relationship of the spongy Ag foam with practical demonstrations in areas such as human motion monitoring and human-robot interaction. These breakthroughs pave the way for highly sensitive and selective strain gauges, showing immediate applicability across a wide range of wearable sensing applications.

3.
Nano Lett ; 24(17): 5379-5386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649277

RESUMEN

Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.

4.
Sci Adv ; 9(34): eadh9232, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611102

RESUMEN

Spatial structures of soft materials have attracted great attention because of emerging applications in wearable electronics, biomedical devices, and soft robotics, but there are no facile technologies available to assemble the soft materials into spatial structures. Here, we report a mechanical transfer route enabled by the rotational motion of curved substrates relative to the soft materials on liquid surface. This transfer can weave soft materials into a broad variety of spatial structures with controllable global weaving chirality and orders and could also produce local ear-like folds with programmable numbers and distributions. We further prove that multiple pieces of soft materials in different forms including wire, ribbon, and large-area film can be woven onto curved substrates with various three-dimensional geometry shapes. Application demonstrations on the woven freestanding spatial structures with on-demand weaving patterns and orders have been conducted to show the temperature-driven multimodal actuating functionalities for programmable robotic postures.

5.
Adv Mater ; 35(42): e2303759, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37410996

RESUMEN

Water-ion interaction in a nanoconfined environment that deeply constrains spatial freedoms of local atomistic motion with unconventional coupling mechanisms beyond that in a free, bulk state is essential to spark designs of a broad spectrum of nanofluidic devices with unique properties and functionalities. Here, it is reported that the interaction between ions and water molecules in a hydrophobic nanopore forms a coordination network with an interaction density that is nearly fourfold that of the bulk counterpart. Such strong interaction facilitates the connectivity of the water-ion network and is uncovered by corroborating the formation of ion clusters and the reduction of particle dynamics. A liquid-nanopore energy-dissipation system is designed and demonstrated in both molecular simulations and experiments that the formed coordination network controls the outflow of confined electrolytes along with a pressure reduction, capable of providing flexible protection for personnel and devices and instrumentations against external mechanical impact and attack.

6.
Small ; 19(12): e2205726, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36748291

RESUMEN

Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2 , WSe2 , WS2 ) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2 /hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m-2 K-1 , which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2 /hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.

7.
STAR Protoc ; 4(1): 101925, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528855

RESUMEN

Wearable temperature sensors with high thermal sensitivity are required for precise and continuous body temperature monitoring. Here, we present a protocol for fabricating a thin, stretchable, and ultrahigh thermal-sensitive wearable sensor based on gold-doped crystalline-silicon nanomembrane (SiNM). We provide detailed steps of gold doping technique to SiNM and fabrication processes for gold-doped crystalline-SiNM based wearable temperature sensor. For complete details on the use and execution of this protocol, please refer to Sang et al. (2022).1.


Asunto(s)
Dispositivos Electrónicos Vestibles , Temperatura , Silicio , Oro
8.
Adv Mater ; 35(6): e2208339, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385516

RESUMEN

Engineering Janus structures that possess anisotropic features in functions have attracted growing attention for a wide range of applications in sensors, catalysis, and biomedicine, and are yet usually designed at the nanoscale with distinct physical or chemical functionalities in their opposite sides. Inspired by the seamless integration of soft and hard materials in biological structures, here a mechanical Janus structure composed of soft and hard materials with a dramatic difference in mechanical properties at an additively manufacturable macroscale is presented. In the combination of extensive experimental, theoretical, and computational studies, the design principle of soft-hard materials integrated mechanical Janus structures is established and their unique rotation mechanism is addressed. The systematic studies of assembling the Janus structure units into superstructures with well-ordered organizations by programming the local rotations are further shown, providing a direct route of designing superstructures by leveraging mechanical Janus structures with unique soft-hard material integration. Applications are conducted to demonstrate the features and functionalities of assembled superstructures with local ordered organizations in regulating and filtering acoustic wave propagations, thereby providing exemplification applications of mechanical Janus design in functional structures and devices.

9.
Dev Comp Immunol ; 140: 104612, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473548

RESUMEN

Salmon alphavirus (SAV) infection leads to severe pancreas disease (PD) with typical inflammatory responses in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Nsp2, an important nonstructural protein of SAV, can activate NF-κB signaling pathway to reduce inflammatory responses. However, the molecular mechanism remains unclear. In this study, the ML (279-421aa) of Nsp2 was revealed to be the key domain for activating NF-κB. We focused on a host protein, DEAD-box RNA helicase 3 (DDX3), that may interact with Nsp2 to regulate NF-κB-induced inflammatory. The interaction between DDX3 and Nsp2 was confirmed in vitro. Overexpression of DDX3 inhibited the activation of NF-κB by Nsp2. SAV Nsp2 relieves the inhibitory effect of DDX3 on NF-κB, thereby initiating the innate immune response. This study revealed the molecular mechanism of Nsp2-induced inflammatory response by targeting DDX3 to activate NF-κB, providing a theoretical basis for revealing the underlying infection mechanism and pathogenesis of SAV.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Enfermedades de los Peces , Oncorhynchus mykiss , Salmo salar , Animales , FN-kappa B , Alphavirus/fisiología , Transducción de Señal
10.
Fish Shellfish Immunol ; 130: 572-581, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988711

RESUMEN

This study compared the N protein sequences of genotype J with other genotypes of IHNV to select amino acid residues that may be related to the change in viral virulence. The recombinant viruses containing different mutation sites were rescued by alanine scanning mutagenesis and the reverse genetic system. The nine recombinant virus strains obtained in this work were named rIHNV-N85, rIHNV-N102, rIHNV-N146, rIHNV-N380, rIHNV-N85-102-146, rIHNV-N85-102-380, rIHNV-N85-146-380, rIHNV-N102-146-380, and rIHNV-N85-102-146-380. Pathogenicity and immunity assays were performed to determine the role of virulence sites. The result of the pathogenicity test showed that the survival rates of rIHNV-N85, rIHNV-N102, rIHNV-N85-102-146, and rIHNV-N85-102-380 groups were 52.5%, 55%, 67.5%, and 57.5%, while the survival rate of wild-type (wt) IHNV HLJ-09 group was only 10%. The replication ability of recombinant viruses with substitutions at positions 85 and 102 was significantly inhibited in vivo and in vitro. The qRT-PCR result indicated that the cytokines of IFN1, IL-8, and IL-1ß expression levels were increased in rIHNV-N85, rIHNV-N102, rIHNV-N85-102-146, and rIHNV-N85-102-380 groups. In addition, these four recombinant viruses could cause the rainbow trout to produce anti-IHNV-specific antibodies immunoglobulin M (IgM) earlier, confirming that 85 and 102 amino acid residues of N protein affected the virulence and immunogenicity of IHNV. All these results suggest that mutations of the N protein virulence sites reduce virulence while retaining immunogenicity. This also provides a new idea for studying the virulence mechanism of rhabdoviruses and preparing attenuated vaccines.


Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Alanina , Aminoácidos , Animales , Inmunoglobulina M , Virus de la Necrosis Hematopoyética Infecciosa/genética , Interleucina-8 , Nucleoproteínas , Vacunas Atenuadas , Virulencia
11.
Adv Sci (Weinh) ; 9(26): e2201336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35856086

RESUMEN

It is widely accepted that solid-state membranes are indispensable media for the graphene process, particularly transfer procedures. But these membranes inevitably bring contaminations and residues to the transferred graphene and consequently compromise the material quality. This study reports a newly observed free-standing graphene-water membrane structure, which replaces the conventional solid-state supporting media with liquid film to sustain the graphene integrity and continuity. Experimental observation, theoretical model, and molecular dynamics simulations consistently indicate that the high surface tension of pure water and its large contact angle with graphene are essential factors for forming such a membrane structure. More interestingly, water surface tension ensures the flatness of graphene layers and renders high transfer quality on many types of target substrates. This report enriches the understanding of the interactions on reduced dimensional material while rendering an alternative approach for scalable layered material processing with ensured quality for advanced manufacturing.


Asunto(s)
Grafito , Grafito/química , Simulación de Dinámica Molecular , Propiedades de Superficie , Agua/química
12.
Front Immunol ; 13: 927443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784302

RESUMEN

IHNV is a virus that infects salmonids and causes serious economic damage to the salmonid farming industry. There is no specific treatment for the disease caused by this pathogen and the main preventive measure is vaccination, but this is only possible for small groups of individuals. Therefore, it is important to investigate new oral vaccines to prevent IHNV. In this study, the CK6 chemokine protein of rainbow trout and the truncated G protein of IHNV were used to construct a secretory expression recombinant L.casei vaccine for rainbow trout. The results showed that the levels of IgM and IgT antibodies in rainbow trout reached the highest level on the 15th day after the secondary immunization, and the antibodies exhibited high inhibitory activity against viral infection. Furthermore, the expression of relevant cytokines in different tissues was detected and found to be significantly higher in the oral vaccine group than in the control group. It was also found that pPG-612-CK6-G/L.casei 393 could stimulate splenic lymphocyte proliferation and improve mucosal immunity with significant differences between the immunized and control groups. When infected with IHNV, the protection rate of pPG-612-CK6-G/L.casei 393 was 66.67% higher than that of the control group. We found that pPG-612-CK6-G/L.casei 393 expressed and secreted the rainbow trout chemokine CK6 protein and IHNV truncated G protein, retaining the original immunogenicity of rainbow trout while enhancing their survival rate. This indicates that recombinant L.casei provides a theoretical basis and rationale for the development of an oral vaccine against IHNV and has important practical implications for the protection of rainbow trout from IHNV infection.


Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Lacticaseibacillus casei , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Vacunas Virales , Administración Oral , Animales , Quimiocinas , Proteínas de Unión al GTP , Vacunas
13.
ACS Nano ; 16(6): 9420-9427, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35658431

RESUMEN

Confining liquid in a hydrophobic nanoenvironment has enabled a broad spectrum of applications in biomedical sensors, mechanical actuators, and energy storage and converters, where the outflow of confined liquid is spontaneous and fast due to the intrinsic hydrophobic nature of nanopores with extremely low interfacial friction, challenging design capacity and control tolerance of structures and devices. Here, we present a facile approach of suppressing the outflow of water confined in hydrophobic nanopores with an electric field. Extensive molecular dynamics simulations show that the presence of an electric field could significantly strengthen hydrogen bonds and retard degradations of the associated networks during the outflow. The outflow deformation and strength are extracted to quantitatively characterize the electrical suppression to outflow and agree well with simulations. This study proposes a practical means of impeding the fast liquid outflow in hydrophobic nanopores, potentially useful for devising nanofluidics-based functional structures and devices with controllable performance.


Asunto(s)
Nanoporos , Interacciones Hidrofóbicas e Hidrofílicas , Electricidad , Simulación de Dinámica Molecular , Agua/química
14.
Adv Mater ; 34(28): e2202418, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523721

RESUMEN

Printable and stretchable conductors based on metallic-filler-reinforced polymer composites that can maintain high electrical conductivity at large strains are essential for emerging applications in wearable electronics, soft robotics, and bio-integrated devices. Regulating microstructures of conductive fillers during mechanical deformations is the key to reconstructing the conductive pathway and retaining high electrical conductivity, which has proven to be challenging. Here, it is reported that Ag flakes can spontaneously reorganize inside a viscoelastic, liquid-like polymer matrix by cyclic mechanical stretching, resulting in reconstructed microstructures and forming highly efficient and stable conductive pathways. Consequently, the electrical conductivities of the resultant composites can be dramatically enhanced by ≈4-8 orders of magnitude and reach ≈104 S cm-1 . The stretch-induced kinematic movements of Ag flakes inside the polymer matrix, together with the reorganization and stabilization mechanisms, are unraveled and validated by the dissipative particle dynamics simulations. This unique phenomenon enables high-performance stretchable conductors to be fabricated with significantly reduced conductive fillers. The printable and stretchable composites presented here hold great promise for use in soft and stretchable electronics, as demonstrated in stretchable light-emitting diode arrays and wearable electronics.

15.
Adv Mater ; 34(4): e2105865, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750868

RESUMEN

Monitoring the body temperature with high accuracy provides a fast, facile, yet powerful route about the human body in a wide range of health information standards. Here, the first ever ultrasensitive and stretchable gold-doped silicon nanomembrane (Au-doped SiNM) epidermal temperature sensor array is introduced. The ultrasensitivity is achieved by shifting freeze-out region to intrinsic region in carrier density and modulation of fermi energy level of p-type SiNM through the development of a novel gold-doping strategy. The Au-doped SiNM is readily transferred onto an ultrathin polymer layer with a well-designed serpentine mesh structure, capable of being utilized as an epidermal temperature sensor array. Measurements in vivo and in vitro show temperature coefficient of resistance as high as -37270.72 ppm °C-1 , 22 times higher than existing metal-based temperature sensors with similar structures, and one of the highest thermal sensitivity among the inorganic material based temperature sensors. Applications in the continuous monitoring of body temperature and respiration rate during exercising are demonstrated with a successful capture of information. This work lays a foundation for monitoring body temperature, potentially useful for precision diagnosis (e.g., continuous monitoring body temperature in coronavirus disease 2019 cases) and management of disease relevance to body temperature in healthcare.


Asunto(s)
Oro/química , Nanoestructuras/química , Silicio/química , Técnicas Biosensibles , Análisis de Elementos Finitos , Humanos , Simulación de Dinámica Molecular , Polímeros/química , Piel , Temperatura Cutánea , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
16.
Extreme Mech Lett ; 522022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37138787

RESUMEN

Urinalysis is a simple and non-invasive approach for the diagnosis and monitoring of organ health and also is often used as a facile technique in assessment of substance abuse. However, quantitative urinalysis is predominantly limited to clinical laboratories. Here, we present an electrical sensing based, reusable, cellular microfluidic device that offers a fast urinalysis through quantitative reading of the electrical signals. The spatial soft porous scaffolds decorated with electrically conductive multiwalled carbon nanotubes that are capable of physically interacting with biomarkers in urine are developed through a cyclic swelling/absorption process of soft materials and are utilized to manufacture the cellular microfluidic device. The sensing capability, sensitivity and reusability (via sunlight exposure) of the device to monitor red blood cells, Escherichia coli, and albumin are systemically demonstrated by programming mechanical deformation of porous scaffolds. Ex vivo experiments in disease mouse models confirm the diagnosis robustness of the device in comparable results with existing biochemical tests. The full integration of electrically conductive nanomaterials into soft scaffolds provides a foundation for devising bioelectronic devices with mechanically programmable microfluidic features in a low-cost manner, with broad applications for rapid disease diagnoses through body fluid.

17.
Nat Commun ; 12(1): 6882, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836961

RESUMEN

Direct transfer of pre-patterned device-grade nano-to-microscale materials highly benefits many existing and potential, high performance, heterogeneously integrated functional systems over conventional lithography-based microfabrication. We present, in combined theory and experiment, a self-delamination-driven pattern transfer of a single crystalline silicon thin membrane via well-controlled interfacial design in liquid media. This pattern transfer allows the usage of an intermediate or mediator substrate where both front and back sides of a thin membrane are capable of being integrated with standard lithographical processing, thereby achieving deterministic assembly of the thin membrane into a multi-functional system. Implementations of these capabilities are demonstrated in broad variety of applications ranging from electronics to microelectromechanical systems, wetting and filtration, and metamaterials.

18.
ACS Nano ; 15(10): 16597-16606, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34648261

RESUMEN

Piling graphene sheets into a bulk form is essential for achieving massive applications of graphene in flexible structures and devices, and the arbitrary shape, random distributions, and adjacent overlaps of graphene sheets are yet challenging the prediction of its fundamental properties that are strongly coupled by mechanical strength and thermal or electronic transport. Here, we present a deep neural network (DNN)-based machine learning (ML) approach that enables the prediction of thermal conductivity of piled graphene structures with a broad range of geometric configurations and dimensions in response to external mechanical loading. A physics-informed pixel value matrix is developed to capture the key geometric features of piled graphene structures and is incorporated into the DNN to train the ML model with the only training data ratio of 12.5% but the prediction accuracy of 94%. The ML model is further extended with the transferred knowledge from primitive training data sets to predict the thermal transport of piled graphene in a custom data set. Extensive demonstrations in search of piled graphene structures with desirable thermal conductivity and its response to mechanical loading are presented and illustrate the capability and accuracy of the DNN-ML model for establishing a mechanically adaptive structure: responsive thermal property paradigm in piled graphene. This work lays a foundation for quantitatively evaluating thermal conductivity of piled graphene in response to mechanical loadings through an ML model and also offers a rational route for exploring mechanically tunable thermal properties of nanomaterial-based bulk forms, potentially useful in the design of flexible thermal structures and devices with controllable thermal management performance.

19.
ACS Appl Mater Interfaces ; 13(11): 13063-13071, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33720683

RESUMEN

Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDCs) have received extensive research interest and investigations in the past decade. In this research, we used a refined opto-thermal Raman technique to explore the thermal transport properties of one popular TMDC material WSe2, in the single-layer (1L), bilayer (2L), and trilayer (3L) forms. This measurement technique is direct without additional processing to the material, and the absorption coefficient of WSe2 is discovered during the measurement process to further increase this technique's precision. By comparing the sample's Raman spectroscopy spectra through two different laser spot sizes, we are able to obtain two parameters-lateral thermal conductivities of 1L-3L WSe2 and the interfacial thermal conductance between 1L-3L WSe2 and the substrate. We also implemented full-atom nonequilibrium molecular dynamics simulations (NEMD) to computationally investigate the thermal conductivities of 1L-3L WSe2 to provide comprehensive evidence and confirm the experimental results. The trend of the layer-dependent lateral thermal conductivities and interfacial thermal conductance of 1L-3L WSe2 is discovered. The room-temperature thermal conductivities for 1L-3L WSe2 are 37 ± 12, 24 ± 12, and 20 ± 6 W/(m·K), respectively. The suspended 1L WSe2 possesses a thermal conductivity of 49 ± 14 W/(m·K). Crucially, the interfacial thermal conductance values between 1L-3L WSe2 and the substrate are found to be 2.95 ± 0.46, 3.45 ± 0.50, and 3.46 ± 0.45 MW/(m2·K), respectively, with a flattened trend starting the 2L, a finding that provides the key information for thermal management and thermoelectric designs.

20.
Nat Commun ; 12(1): 1544, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750806

RESUMEN

Electroretinogram examinations serve as routine clinical procedures in ophthalmology for the diagnosis and management of many ocular diseases. However, the rigid form factor of current corneal sensors produces a mismatch with the soft, curvilinear, and exceptionally sensitive human cornea, which typically requires the use of topical anesthesia and a speculum for pain management and safety. Here we report a design of an all-printed stretchable corneal sensor built on commercially-available disposable soft contact lenses that can intimately and non-invasively interface with the corneal surface of human eyes. The corneal sensor is integrated with soft contact lenses via an electrochemical anchoring mechanism in a seamless manner that ensures its mechanical and chemical reliability. Thus, the resulting device enables the high-fidelity recording of full-field electroretinogram signals in human eyes without the need of topical anesthesia or a speculum. The device, superior to clinical standards in terms of signal quality and comfortability, is expected to address unmet clinical needs in the field of ocular electrodiagnosis.


Asunto(s)
Lentes de Contacto Hidrofílicos , Córnea/fisiología , Electrodiagnóstico/métodos , Sensación/fisiología , Visión Ocular/fisiología , Enfermedades de la Córnea/diagnóstico , Electrodiagnóstico/instrumentación , Electrorretinografía/instrumentación , Electrorretinografía/métodos , Humanos , Reproducibilidad de los Resultados , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...