Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Drug Metab Pharmacokinet ; 49(3): 317-330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393637

RESUMEN

BACKGROUND AND OBJECTIVE: HY-088 injection is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIOs) composed of iron oxide crystals coated with polyacrylic acid (PAA) on the surface. The purpose of this study was to investigate the pharmacokinetics, tissue distribution, and mass balance of HY-088 injection. METHODS: The pharmacokinetics of [55Fe]-HY-088 and [14C]-HY-088 were investigated in 48 SD rats by intravenous injection of 8.5 (low-dose group), 25.5 (medium-dose group), and 85 (high-dose group) mg/100 µCi/kg. Tissue distribution was studied by intravenous injection of 35 mg/100 µCi/kg in 48 SD rats, and its tissue distribution in vivo was obtained by ex vivo tissue assay. At the same time, [14C]-HY-088 was injected intravenously at a dose of 25.5 mg/100 µCi/kg into 16 SD rats, and its tissue distribution in vivo was studied by quantitative whole-body autoradiography. [14C]-HY-088 and [55Fe]-HY-088 were injected intravenously into 24 SD rats at a dose of 35 mg/100 µCi/kg, and their metabolism was observed. RESULTS: In the pharmacokinetic study, [55Fe]-HY-088 reached the maximum observed concentration (Cmax) at 0.08 h in the low- and medium-dose groups of SD rats. [14C]-HY-088 reached Cmax at 0.08 h in the three groups of SD rats. The area under the concentration-time curve (AUC) of [55Fe]-HY-088 and [14C]-HY-088 increased with increasing dose. In the tissue distribution study, [55Fe]-HY-088 and [14C]-HY-088 were primarily distributed in the liver, spleen, and lymph nodes of both female and male rats. In the mass balance study conducted over 57 days, the radioactive content of 55Fe from [55Fe]-HY-088 was primarily found in the carcass, accounting for 86.42 ± 4.18% in females and 95.46 ± 6.42% in males. The radioactive recovery rates of [14C]-HY-088 in the urine of female and male rats were 52.99 ± 5.48% and 60.66 ± 2.23%, respectively. CONCLUSIONS: Following single intravenous administration of [55Fe]-HY-088 and [14C]-HY-088 in SD rats, rapid absorption was observed. Both [55Fe]-HY-088 and [14C]-HY-088 were primarily distributed in the liver, spleen, and lymph nodes. During metabolism, the radioactivity of [55Fe]-HY-088 is mainly present in the carcass, whereas the 14C-labeled [14C]-HY-088 shell PAA is eliminated from the body mainly through the urine.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Ratas Sprague-Dawley , Animales , Distribución Tisular , Masculino , Ratas , Femenino , Nanopartículas Magnéticas de Óxido de Hierro/química , Inyecciones Intravenosas , Nanopartículas de Magnetita/química , Dextranos/farmacocinética , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética
2.
Nucl Med Commun ; 43(7): 834-846, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438673

RESUMEN

PURPOSE: To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging. METHODS: 89Zr-oxine complex was synthesized from 89Zr-oxalate and 8-hydroxyquinoline (oxine). After hMSCs were labeled with the 89Zr-oxine complex, the radioactivity retention, viability, proliferation, apoptosis, differentiation, morphology, and phenotype of labeled cells were assessed. The biodistribution of 89Zr-oxine-labeled hMSCs in SD rats was tracked in real-time by micro-PET/CT imaging. RESULTS: The cell labeling efficiency was 52.6 ± 0.01%, and 89Zr-oxine was stably retained in cells (66.7 ± 0.9% retention on 7 days after labeling). Compared with the unlabeled hMSCs, 89Zr-oxine labeling did not affect the biological characteristics of cells. Following intravenous administration in SD rats, labeled hMSCs mainly accumulated in the liver (7.35 ± 1.41% ID/g 10 days after labeling, n = 6) and spleen (8.48 ± 1.20% ID/g 10 days after labeling, n = 6), whereas intravenously injected 89Zr-oxalate mainly accumulated in the bone (4.47 ± 0.35% ID/g 10 days after labeling, n = 3). CONCLUSION: 89Zr-oxine labeling and micro-PET/CT imaging provide a useful and non-invasive method of assessing the biodistribution of cell therapy products in SD rats. The platform provides a foundation for us to further understand the mechanism of action and migration dynamics of cell therapy products.


Asunto(s)
Células Madre Mesenquimatosas , Oxiquinolina , Animales , Médula Ósea , Humanos , Oxalatos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Tomografía Computarizada por Rayos X , Circonio/farmacología
3.
Biomed Res Int ; 2018: 5208964, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356372

RESUMEN

Molecular imaging of estrogen receptor-positive (ER+) pathway-activated system serves the basis of ER+ disease management such as cancers and endometriosis. ER+ patients have better response to endocrine therapy and survive twice as long as negative ER patients. However, tumor resistance resulting from clinical used aromatase inhibitors and antiestrogens is unpredictable. Radiolabeled ER+ ligand could quantify ER+ tissue uptake which helps to stage and restage of the cancer as well as endometriosis. The differential diagnosis of ER+ lesions by using a labeled ligand helps to select the patients for optimal response to endocrine therapy and to discontinue the treatment when resistance occurs. In addition, radiolabeled ER+ ligand serves as basis for image-guided response follow-up. Glutamate receptors are cell surface receptors which are overexpressed in inflammation and infection. Using glutamate peptide as a drug carrier helps to target intracellular genes via glutamate receptor-mediated process. Reports have shown that polyglutamate is a drug carrier that could alter drug solubility and enhance estrogen receptor-ligand binding pocket. However, polyglutamate was a blend of mixed polymer with a wide range of molecular weight. Thus, the structural confirmation and purity of the conjugates were not optimized. To overcome this problem, the efficient synthesis of glutamate peptide-estradiol (GAP-EDL) conjugate was achieved with high purity. EDL was conjugated site-specific at the first glutamate of GAP. The average cell uptake of 68Ga-GAP-EDL was 5-fold higher than the previous reported synthesis. The efficient synthesis of GAP-EDL has greatly enhanced sensitivity and specificity in cell uptake studies. In vivo PET imaging studies indicated that 68Ga-GAP-EDL could image ER (+) tumors in MCF-7 tumor-bearing mice. Therefore, GAP-EDL makes it possible to image ER-enriched endometriosis and cancer.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Estradiol , Radioisótopos de Galio , Marcaje Isotópico , Péptidos , Tomografía de Emisión de Positrones , Neoplasias de la Mama/metabolismo , Estradiol/síntesis química , Estradiol/química , Estradiol/farmacología , Femenino , Radioisótopos de Galio/química , Radioisótopos de Galio/farmacología , Humanos , Células MCF-7 , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...