Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470195

RESUMEN

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Asunto(s)
Amicacina , Péptidos Cíclicos , Infecciones por Pseudomonas , Animales , Ratones , Amicacina/farmacología , Pseudomonas aeruginosa , Potenciales de la Membrana , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Tobramicina/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana
2.
Microbiol Spectr ; : e0125723, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668398

RESUMEN

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause a variety of acute and chronic infections. The bacterium is highly resistant to numerous antibiotics. Murepavadin is a peptidomimetic antibiotic that blocks the function of P. aeruginosa lipopolysaccharide (LPS) transport protein D (LptD), thus inhibiting the insertion of LPS into the outer membrane. In this study, we demonstrated that sublethal concentrations of murepavadin enhance the bacterial outer membrane permeability. Proteomic analyses revealed the alteration of protein composition in bacterial inner and outer membranes following murepavadin treatment. The antisigma factor MucA was upregulated by murepavadin. In addition, the expression of the sigma E factor gene algU and the alginate synthesis gene algD was induced by murepavadin. Deletion of the algU gene reduces bacterial survival following murepavadin treatment, indicating a role of the envelope stress response in bacterial tolerance. We further demonstrated that murepavadin enhances the bactericidal activities of ß-lactam antibiotics by promoting drug influx across the outer membrane. In a mouse model of acute pneumonia, the murepavadin-ceftazidime/avibactam combination showed synergistic therapeutic effect against P. aeruginosa infection. In addition, the combination of murepavadin with ceftazidime/avibactam slowed down the resistance development. In conclusion, our results reveal the response mechanism of P. aeruginosa to murepavadin and provide a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEThe ever increasing resistance of bacteria to antibiotics poses a serious threat to global public health. Novel antibiotics and treatment strategies are urgently needed. Murepavadin is a novel antibiotic that blocks the assembly of lipopolysaccharide (LPS) into the Pseudomonas aeruginosa outer membrane by inhibiting LPS transport protein D (LptD). Here, we demonstrated that murepavadin impairs bacterial outer membrane integrity, which induces the envelope stress response. We further found that the impaired outer membrane integrity increases the influx of ß-lactam antibiotics, resulting in enhanced bactericidal effects. In addition, the combination of murepavadin and a ß-lactam/ß-lactamase inhibitor mixture (ceftazidime/avibactam) slowed down the resistance development of P. aeruginosa. Overall, this study demonstrates the bacterial response to murepavadin and provides a new combination strategy for effective treatment.

3.
Appl Environ Microbiol ; 89(6): e0209422, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37184394

RESUMEN

Pseudomonas aeruginosa possesses three type VI secretion systems (T6SSs) that are involved in interspecies competition, internalization into epithelial cells, and virulence. Host-derived mucin glycans regulate the T6SSs through RetS, and attacks from other species activate the H1-T6SS. However, other environmental signals that control the T6SSs remain to be explored. Previously, we determined PitA to be a constitutive phosphate transporter, whose mutation reduces the intracellular phosphate concentration. Here, we demonstrate that mutation in the pitA gene increases the expression of the H2- and H3-T6SS genes and enhances bacterial uptake by A549 cells. We further found that mutation of pitA results in activation of the quorum sensing (QS) systems, which contributes to the upregulation of the H2- and H3-T6SS genes. Overexpression of the phosphate transporter complex genes pstSCAB or knockdown of the phosphate starvation response regulator gene phoB in the ΔpitA mutant reduces the expression of the QS genes and subsequently the H2- and H3-T6SS genes and bacterial internalization. Furthermore, growth of wild-type PA14 in a low-phosphate medium results in upregulation of the QS and H2- and H3-T6SS genes and bacterial internalization compared to those in cells grown in a high-phosphate medium. Deletion of the phoB gene abolished the differences in the expression of the QS and T6SS genes as well as bacterial internalization in the low- and high- phosphate media. Overall, our results elucidate the mechanism of PitA-mediated regulation on the QS system and H2- and H3-T6SSs and reveal a novel pathway that regulates the T6SSs in response to phosphate starvation. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogenic bacterium that causes acute and chronic infections in humans. The type VI secretion systems (T6SSs) have been shown to associate with chronic infections. Understanding the mechanism used by the bacteria to sense environmental signals and regulate virulence factors will provide clues for developing novel effective treatment strategies. Here, we demonstrate a relationship between a phosphate transporter and the T6SSs and reveal a novel regulatory pathway that senses phosphate limitation and controls bacterial virulence factors in P. aeruginosa.


Asunto(s)
Sistemas de Secreción Tipo VI , Humanos , Sistemas de Secreción Tipo VI/genética , Pseudomonas aeruginosa/fisiología , Infección Persistente , Factores de Virulencia/metabolismo , Percepción de Quorum/genética , Fosfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
iScience ; 25(9): 105035, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36117992

RESUMEN

Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections.

5.
Microbiol Spectr ; 10(5): e0139022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35972286

RESUMEN

The evolution of bacterial antibiotic resistance is exhausting the list of currently used antibiotics and endangers those in the pipeline. The combination of antibiotics is a promising strategy that may suppress resistance development and/or achieve synergistic therapeutic effects. Eravacycline is a newly approved antibiotic that is effective against a variety of multidrug-resistant (MDR) pathogens. However, the evolution of resistance to eravacycline and strategies to suppress the evolution remain unexplored. Here, we demonstrated that a carbapenem-resistant Klebsiella pneumoniae clinical isolate quickly developed resistance to eravacycline, which is mainly caused by mutations in the gene encoding the Lon protease. The evolved resistant mutants display collateral sensitivities to ß-lactam/ß-lactamase inhibitor (BLBLI) combinations aztreonam/avibactam and ceftazidime-avibactam. Proteomic analysis revealed upregulation of the multidrug efflux system AcrA-AcrB-TolC and porin proteins OmpA and OmpU, which contributed to the increased resistance to eravacycline and susceptibility to BLBLIs, respectively. The combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam suppresses resistance development. We further demonstrated that eravacycline-resistant mutants evolved from an NDM-1-containing K. pneumoniae strain display collateral sensitivity to aztreonam/avibactam, and the combination of eravacycline with aztreonam/avibactam suppresses resistance development. In addition, the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam displayed synergistic therapeutic effects in a murine cutaneous abscess model. Overall, our results revealed mechanisms of resistance to eravacycline and collateral sensitivities to BLBLIs and provided promising antibiotic combinations in the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE The increasing bacterial antibiotic resistance is a serious threat to global public health, which demands novel antimicrobial medicines and treatment strategies. Eravacycline is a newly approved antibiotic that belongs to the tetracycline antibiotics. Here, we found that a multidrug-resistant Klebsiella pneumoniae clinical isolate rapidly developed resistance to eravacycline and the evolved resistant mutants displayed collateral sensitivity to antibiotics aztreonam/avibactam and ceftazidime-avibactam. We demonstrated that the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam repressed resistance development and improved the treatment efficacies. We also elucidated the mechanisms that contribute to the increased resistance to eravacycline and susceptibility to aztreonam/avibactam and ceftazidime-avibactam. This work demonstrated the mechanisms of antibiotic resistance and collateral sensitivity and provided a new therapeutically option for effective antibiotic combinations.


Asunto(s)
Infecciones por Klebsiella , Proteasa La , Ratones , Animales , Klebsiella pneumoniae/genética , Aztreonam/farmacología , Aztreonam/uso terapéutico , Sensibilidad Colateral al uso de Fármacos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Proteasa La/metabolismo , Proteómica , Pruebas de Sensibilidad Microbiana , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Carbapenémicos/uso terapéutico , Porinas/farmacología , Porinas/uso terapéutico , beta-Lactamasas/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología
6.
Microbiol Spectr ; 10(1): e0185821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196795

RESUMEN

NrtR is a Nudix-related transcriptional regulator that is distributed among diverse bacteria and plays an important role in modulating bacterial intracellular NAD homeostasis. Previously, we showed that NrtR influences the T3SS expression and pathogenesis of Pseudomonas aeruginosa and demonstrated that NrtR mediates T3SS regulation through the cAMP/Vfr pathway. In the present study, we found that mutation of the nrtR gene leads to upregulation of the Hcp secretion island-I type VI secretion system (H1-T6SS). Further analysis revealed that mutation of the nrtR gene results in upregulation of regulatory RNAs (RsmY/RsmZ) that are known to control the H1-T6SS by sequestration of RsmA or RsmN. Simultaneous deletion of rsmY/rsmZ reduced the expression of H1-T6SS in the ΔnrtR mutant. In addition, overexpression of either rsmA or rsmN in ΔnrtR decreased H1-T6SS expression. Chromatin immunoprecipitation (ChIP)-Seq and electrophoretic mobility shift assay (EMSA) analyses revealed that NrtR directly binds to the promoters of rsmY, rsmZ and tssA1 (first gene of the H1-T6SS operon). Overall, the results from this study reveal the molecular details of NrtR-mediated regulation of H1-T6SS in P. aeruginosa. IMPORTANCE NrtR is a Nudix-related transcriptional regulator and controls the NAD cofactor biosynthesis in bacteria. P. aeruginosa NrtR binds to the intergenic region between nadD2 and pcnA to repress the expression of the two operons, therefore controlling the NAD biosynthesis. We have previously reported that NrtR controls T3SS expression via the cAMP/Vfr pathway in P. aeruginosa. However, the global regulatory function and direct binding targets of the NrtR remain elusive in P. aeruginosa. This study reveals novel direct regulatory targets of the NrtR in P. aeruginosa, elucidating the molecular mechanism of NrtR-mediated regulation of H1-T6SS.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Operón , Regiones Promotoras Genéticas , ARN Bacteriano/genética , Transcripción Genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Virulencia , Factores de Virulencia/genética
7.
PLoS Pathog ; 18(1): e1010170, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986198

RESUMEN

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5' untranslated region (5' UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5' UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/patogenicidad , Proteínas Ribosómicas/metabolismo , Transactivadores/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Regiones no Traducidas 5' , Células HeLa , Humanos , Pseudomonas aeruginosa/metabolismo , Transcripción Genética , Virulencia/fisiología , Factores de Virulencia/metabolismo
8.
Int J Antimicrob Agents ; 58(5): 106434, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34525402

RESUMEN

The outer membrane of Gram-negative bacteria constitutes a permeability barrier that prevents certain antibiotics reaching their target, thus conferring a high tolerance to a wide range of antibiotics. Combined therapies of antibiotics and outer membrane-perturbing drugs have been proposed as an alternative treatment to extend the use of antibiotics active against Gram-positive bacteria to Gram-negative bacteria. Among the outer membrane-active compounds, the outer membrane-permeabilising peptides play a prominent role. They form a group of small cationic and amphipathic molecules with the ability to insert specifically into bacterial membranes, inducing their permeabilisation and/or disruption. Here we assessed the combined effect of several compounds belonging to the main antibiotic families and the cathelicidin close-to-nature outer membrane peptide D-11 against four clinically relevant Gram-negative bacteria. The results showed that peptide D-11 displays strong synergistic activity with several antibiotics belonging to different families, in particular against Klebsiella pneumoniae, even better than some other outer membrane-active peptides that are currently in clinical trials, such as SPR741. Notably, we observed this activity in vitro, ex vivo in a newly designed bacteraemia model, and in vivo in a mouse abscess infection model. Overall, our results suggest that D-11 is a good candidate to repurpose the activity of traditional antibiotics against K. pneumoniae.


Asunto(s)
Absceso/tratamiento farmacológico , Antibacterianos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Catelicidinas/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Absceso/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Quimioterapia Combinada , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Permeabilidad/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos
9.
PLoS Pathog ; 17(9): e1009909, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478485

RESUMEN

The emergence and rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to the global healthcare. There is an urgent need for new antibacterial substances or new treatment strategies to deal with the infections by MDR bacterial pathogens, especially the Gram-negative pathogens. In this study, we show that a number of synthetic cationic peptides display strong synergistic antimicrobial effects with multiple antibiotics against the Gram-negative pathogen Pseudomonas aeruginosa. We found that an all-D amino acid containing peptide called D-11 increases membrane permeability by attaching to LPS and membrane phospholipids, thereby facilitating the uptake of antibiotics. Subsequently, the peptide can dissipate the proton motive force (PMF) (reducing ATP production and inhibiting the activity of efflux pumps), impairs the respiration chain, promotes the production of reactive oxygen species (ROS) in bacterial cells and induces intracellular antibiotics accumulation, ultimately resulting in cell death. By using a P. aeruginosa abscess infection model, we demonstrate enhanced therapeutic efficacies of the combination of D-11 with various antibiotics. In addition, we found that the combination of D-11 and azithromycin enhanced the inhibition of biofilm formation and the elimination of established biofilms. Our study provides a realistic treatment option for combining close-to-nature synthetic peptide adjuvants with existing antibiotics to combat infections caused by P. aeruginosa.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana Múltiple/fisiología , Infecciones por Pseudomonas , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C
10.
Front Microbiol ; 12: 659808, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248872

RESUMEN

Therapy for Pseudomonas aeruginosa infections is hard due to its high natural and acquirable antibiotic resistance. After colonization in the hosts, P. aeruginosa commonly accumulates genomic mutations which confer them antibiotic resistance and better adaptations to the host environment. Deciphering the mechanisms of antibiotic resistance development in the clinical setting may provide critical insights into the design of effective combinatory antibiotic therapies to treat P. aeruginosa infections. In this work, we demonstrate a resistance mechanism to aztreonam of a clinical isolate (ARP36) in comparison with a sensitive one (CSP18). RNAseq and genomic DNA resequencing were carried out to compare the global transcriptional profiles and in the clinical setting genomic profiles between these two isolates. The results demonstrated that hyperexpression of an efflux pump MexAB-OprM caused by a R70Q substitution in MexR, contributed to the increased resistance to aztreonam in the isolate ARP36. Simulation of mexR of ARP36 by gene editing in CSP18 conferred CSP18 an ARP36-like susceptibility to the aztreonam. The R70Q substitution prevented MexR from binding to the intergenic region between mexR and mexAB-oprM operon, with no impact on its dimerization. The presented experimental results explain for the first time why the clinically relevant R70Q substitution in the MexR derepresses the expression of mexAB-oprM in P. aeruginosa.

11.
J Antibiot (Tokyo) ; 74(8): 528-537, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34050325

RESUMEN

Trans-translation is a unique bacterial ribosome rescue system that plays important roles in the tolerance to environmental stresses. It is composed of an ssrA-encoded tmRNA and a protein SmpB. In this study, we examined the role of trans-translation in antibiotic tolerance in Klebsiella pneumoniae and explored whether the inhibition of this mechanism could enhance the bactericidal activities of antibiotics. We found that deletion of the ssrA gene reduced the survival of K. pneumoniae after treatment with kanamycin, tobramycin, azithromycin, and ciprofloxacin, indicating an important role of the trans-translation in bacterial antibiotic tolerance. By using a modified ssrA gene with a 6×His tag we demonstrated that tobramycin suppressed the azithromycin and ciprofloxacin-elicited activation of trans-translation. The results were further confirmed with a trans-translation reporter system that is composed of a normal mCherry gene and a gfp gene without the stop codon. Compared to each individual antibiotic, combination of tobramycin with azithromycin or ciprofloxacin synergistically enhanced the killing activities against planktonic K. pneumoniae cells and improved bacterial clearance in a murine cutaneous abscess infection model. In addition, the combination of tobramycin and ciprofloxacin increased the bactericidal activities against biofilm-associated cells. Overall, our results suggest that the combination of tobramycin with azithromycin or ciprofloxacin is a promising strategy in combating K. pneumoniae infections.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Ciprofloxacina/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Tobramicina/farmacología , Animales , Biopelículas/efectos de los fármacos , Codón , Perros , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Sinergismo Farmacológico , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Proteínas Luminiscentes , Pruebas de Sensibilidad Microbiana , Proteína Fluorescente Roja
12.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310711

RESUMEN

YbeY is a highly conserved RNase in bacteria and plays essential roles in the maturation of 16S rRNA, regulation of small RNAs (sRNAs) and bacterial responses to environmental stresses. Previously, we verified the role of YbeY in rRNA processing and ribosome maturation in Pseudomonas aeruginosa and demonstrated YbeY-mediated regulation of rpoS through a sRNA ReaL. In this study, we demonstrate that mutation of the ybeY gene results in upregulation of the type III secretion system (T3SS) genes as well as downregulation of the type VI secretion system (T6SS) genes and reduction of biofilm formation. By examining the expression of the known sRNAs in P. aeruginosa, we found that mutation of the ybeY gene leads to downregulation of the small RNAs RsmY/Z that control the T3SS, the T6SS and biofilm formation. Further studies revealed that the reduced levels of RsmY/Z are due to upregulation of retS Taken together, our results reveal the pleiotropic functions of YbeY and provide detailed mechanisms of YbeY-mediated regulation in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa causes a variety of acute and chronic infections in humans. The type III secretion system (T3SS) plays an important role in acute infection and the type VI secretion system (T6SS) and biofilm formation are associated with chronic infections. Understanding of the mechanisms that control the virulence determinants involved in acute and chronic infections will provide clues for the development of effective treatment strategies. Our results reveal a novel RNase mediated regulation on the T3SS, T6SS and biofilm formation in P. aeruginosa.

13.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605982

RESUMEN

Posttranscriptional regulation plays an essential role in the quick adaptation of pathogenic bacteria to host environments, and RNases play key roles in this process by modifying small RNAs and mRNAs. We find that the Pseudomonas aeruginosa endonuclease YbeY is required for rRNA processing and the bacterial virulence in a murine acute pneumonia model. Transcriptomic analyses reveal that knocking out the ybeY gene results in downregulation of oxidative stress response genes, including the catalase genes katA and katB Consistently, the ybeY mutant is more susceptible to H2O2 and neutrophil-mediated killing. Overexpression of katA restores the bacterial tolerance to H2O2 and neutrophil killing as well as virulence. We further find that the downregulation of the oxidative stress response genes is due to defective expression of the stationary-phase sigma factor RpoS. We demonstrate an autoregulatory mechanism of RpoS and find that ybeY mutation increases the level of a small RNA, ReaL, which directly represses the translation of rpoS through the 5' UTR of its mRNA and subsequently reduces the expression of the oxidative stress response genes. In vitro assays demonstrate direct degradation of ReaL by YbeY. Deletion of reaL or overexpression of rpoS in the ybeY mutant restores the bacterial tolerance to oxidative stress and the virulence. We also demonstrate that YbeZ binds to YbeY and is involved in the 16S rRNA processing and regulation of reaL and rpoS as well as the bacterial virulence. Overall, our results reveal pleiotropic roles of YbeY and the YbeY-mediated regulation of rpoS through ReaL.IMPORTANCE The increasing bacterial antibiotic resistance imposes a severe threat to human health. For the development of effective treatment and prevention strategies, it is critical to understand the mechanisms employed by bacteria to grow in the human body. Posttranscriptional regulation plays an important role in bacterial adaptation to environmental changes. RNases and small RNAs are key players in this regulation. In this study, we demonstrate critical roles of the RNase YbeY in the virulence of the pathogenic bacterium Pseudomonas aeruginosa We further identify the small RNA ReaL as the direct target of YbeY and elucidate the YbeY-regulated pathway on the expression of bacterial virulence factors. Our results shed light on the complex regulatory network of P. aeruginosa and indicate that inference with the YbeY-mediated regulatory pathway might be a valid strategy for the development of a novel treatment strategy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Procesamiento Postranscripcional del ARN , Virulencia , Animales , Proteínas Bacterianas/genética , Endorribonucleasas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Células HL-60 , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/enzimología , ARN Bacteriano/metabolismo , Factor sigma/genética
14.
Front Microbiol ; 11: 1390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636831

RESUMEN

Infections by Pseudomonas aeruginosa are difficult to cure due to its high intrinsic and acquired antibiotic resistance. Once colonized the human host, and thanks to antibiotic treatment pressure, P. aeruginosa usually acquires genetic mutations which provide bacteria with antibiotic resistance as well as ability to better adapt to the host environment. Deciphering the evolutionary traits may provide important insights into the development of effective combinatory antibiotic therapy to treat P. aeruginosa infections. In this study, we investigated the molecular mechanisms by which a clinical isolate (ISP50) yields a carbapenem-resistant derivative (IRP41). RNAseq and genomic DNA reference mapping were conducted to compare the transcriptional profiles and in vivo evolutionary trajectories between the two isolates. Our results demonstrated that oprD mutation together with ampC hyper-expression contributed to the increased resistance to carbapenem in the isolate IRP41. Furthermore, a ldcA (PA5198) gene, encoding murein tetrapeptide carboxypeptidase, has been demonstrated for the first time to negatively influence the ampC expression in P. aeruginosa.

15.
Front Microbiol ; 11: 598291, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488544

RESUMEN

Treatment of infections by Pseudomonas aeruginosa is difficult due to its high intrinsic and acquired antibiotic resistance. Upon colonization in the human hosts, P. aeruginosa accumulates genetic mutations that confer the bacterium antibiotic resistance and ability to better live in the host environment. Characterizing the evolutionary traits would provide important insights into the development of effective combinatory antibiotic therapies to cure P. aeruginosa infections. In this work, we performed a detailed analysis of the molecular mechanisms by which a clinical isolate (CSP18) yields a ciprofloxacin-resistant derivative (CRP42). Genomic DNA re-sequencing and RNAseq were carried out to compare the genomic mutational signature and transcriptional profiles between the two isolates. The results indicated that D87G mutation in GyrA, together with MexEF-OprN hyper-expression caused by F7S mutation in MexS, was responsible for the increased resistance to ciprofloxacin in the isolate CRP42. Further simulation of CRP42 by gene editing in CSP18 demonstrated that D87G mutation in GyrA rendered CSP18 a fourfold increase in minimum inhibitory concentration against ciprofloxacin, while F7S mutation in MexS conferred an additional eightfold increase. Our experimental results demonstrate for the first time that the clinically relevant F7S point mutation in MexS results in hyper-expression of the mexEF-oprN and thus confers P. aeruginosa resistance to ciprofloxacin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA