Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Microb Biotechnol ; 17(2): e14413, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376071

RESUMEN

The basic leucine zipper (bZIP) transcription factor (TF) is widespread among eukaryotes and serves different roles in fungal processes including nutrient utilization, growth, stress responses and development. The oyster mushroom (Pleurotus ostreatus) is an important and widely cultivated edible mushroom worldwide; nevertheless, reports are lacking on the identification or function of bZIP gene family members in P. ostreatus. Herein, 11 bZIPs on 6 P. ostreatus chromosomes were systematically identified, which were classified into 3 types according to their protein sequences. Phylogenetic analysis of PobZIPs with other fungal bZIPs indicated that PobZIPs may have differentiated late. Cis-regulatory element analysis revealed that at least one type of stress-response-related element was present on each bZIP promoter. RNA-seq and RT-qPCR analyses revealed that bZIP expression patterns were altered under heat stress and different developmental stages. We combined results from GST-Pull-down, EMSA and yeast two-hybrid assays to screen a key heat stress-responsive candidate gene PobZIP3. PobZIP3 overexpression in P. ostreatus enhanced tolerance to high temperature and cultivation assays revealed that PobZIP3 positively regulates the development of P. ostreatus. RNA-seq analysis showed that PobZIP3 plays a role in glucose metabolism pathways, antioxidant enzyme activity and sexual reproduction. These results may support future functional studies of oyster mushroom bZIP TFs.


Asunto(s)
Pleurotus , Pleurotus/genética , Filogenia , Respuesta al Choque Térmico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Secuencia de Aminoácidos
2.
Front Nutr ; 10: 1197998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662599

RESUMEN

Sanghuangporus vaninii is a profitable traditional and medicinal edible fungus with uncommon therapeutic properties and medicinal value. The accumulation of active ingredients in this fungus that is used in traditional Chinese medicine is affected by its years of growth, and their pharmacological activities are also affected. However, the effects of age on the medicinal value of fruiting bodies of S. vaninii cultivated on cut log substrate remain unclear. In this study, an untargeted liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was performed to characterize the profiles of metabolites from 1-, 2- and 3-year-old fruiting bodies of S. vaninii. A total of, 156 differentially accumulated metabolites (DAMs) were screened based on the criterion of a variable importance projection greater than 1.0 and p < 0.01, including 75% up regulated and 25% down regulated. The results of enrichment of metabolic pathways showed that the metabolites involved the biosynthesis of plant secondary metabolites, biosynthesis of amino acids, central carbon metabolism in cancer, steroid hormone biosynthesis, linoleic acid metabolism, prolactin signaling pathway, and arginine biosynthesis, and so on. The biosynthesis of plant secondary metabolites pathway was significantly activated. Five metabolites were significantly elevated within the growth of fruiting bodies, including 15-keto-prostaglandin F2a, (4S, 5R)-4,5,6-trihydroxy-2-iminohexanoate, adenylsuccinic acid, piplartine, and chenodeoxycholic acid. 15-keto-prostaglandin F2a is related to the pathway of arachidonic acid metabolism and was significantly increased up to 1,320- and 535-fold in the 2- and 3-year-old fruiting bodies, respectively, compared with those in the 1-year-old group. The presence of these bioactive natural products in S. vaninii is consistent with the traditional use of Sanghuang, which prompted an exploration of its use as a source of natural prostaglandin in the form of foods and nutraceuticals. These findings may provide insight into the functional components of S. vaninii to develop therapeutic strategies.

3.
AMB Express ; 13(1): 104, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768391

RESUMEN

The laccase gene family encodes multiple isozymes that are crucial for the degradation of substrates and the regulation of developmental processes in fungi. Pleurotus eryngii is an important edible and medicinal fungus belonging to the Basidiomycota phylum and can grow on a variety of natural substrates. In the present study, genome-wide profiling of P. eryngii identified 10 genes encoding its laccase isoenzymes. Conservative sequence analysis demonstrated that all PeLacs possess classical laccase structural domains. Phylogenetic analysis yielded four major subgroups, the members of which are similar with respect to conserved gene organization, protein domain architecture, and consensus motifs. The 10 PeLacs formed three groups together with 12 PoLacs in Pleurotus ostreatus, indicating that they share a high level of evolutionary homology. Cis-responsive element analysis implied that PeLacs genes play a role in growth and development and lignocellulose degradation. Targeted overexpression of PeLac5 reduced the time to primordia formation and their development to fruiting bodies. Gene expression patterns in the presence of different lignocellulosic substrates indicate that three PeLacs genes (2, 4, and 9) are key to lignocellulose degradation. This work presents the first inventory of laccase genes in P. eryngii and preliminarily explores their functions, which may help to uncover the manner by which these proteins utilize substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA