Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 262, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069645

RESUMEN

BACKGROUND: Multiple preclinical studies have reported a beneficial effect of extracellular vesicles (EVs), especially mesenchymal stem cells derived EVs (MSC-EVs), in the treatment of sepsis. However, the therapeutic effect of EVs is still not universally recognized. Therefore, we conducted this meta-analysis by summarizing data from all published studies that met certain criteria to systematically review the association between EVs treatment and mortality in animal models of sepsis. METHODS: Systematic retrieval of all studies in PubMed, Cochrane and Web of Science that reported the effects of EVs on sepsis models up to September 2022. The primary outcome was animal mortality. After screening the eligible articles according to inclusion and exclusion criteria, the inverse variance method of fixed effect model was used to calculate the joint odds ratio (OR) and 95% confidence interval (CI). Meta-analysis was performed by RevMan version 5.4. RESULTS: In total, 17 studies met the inclusion criteria. Meta-analysis of those studies showed that EVs treatment was associated with reduced mortality in animal models of sepsis (OR 0.17 95% CI: 0.11,0.26, P < 0.001). Further subgroup analysis showed that the mode of sepsis induction, the source, dose, time and method of injection, and the species and gender of mice had no significant effect on the therapeutic effect of EVs. CONCLUSION: This meta-analysis showed that MSC-EVs treatment may be associated with lower mortality in animal models of sepsis. Subsequent preclinical studies will need to address the standardization of dose, source, and timing of EVs to provide comparable data. In addition, the effectiveness of EVs in treating sepsis must be studied in large animal studies to provide important clues for human clinical trials.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Sepsis , Ratones , Humanos , Animales , Modelos Animales de Enfermedad , Sepsis/terapia , Tratamiento Basado en Trasplante de Células y Tejidos
2.
Stem Cell Res Ther ; 13(1): 32, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090551

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are emerging as a potential candidate for stem cell transplantation to repair myocardial tissue in myocardial infarctions (MI). However, there are some pivotal limitations such as poor survival and low migration capacity of MSCs in hypoxic and ischemic microenvironments of MI. Our previous work verified that ELABELA (also abbreviated as ELA), a peptide hormone, could play a role as a growth factor and prolong the life span of rat bone marrow-derived mesenchymal stem cells (RAT BM-MSCs) under hypoxic and ischemic conditions. Nevertheless, the influence of ELA on the cell cycle, proliferation, and migration remains elusive. This study will further explore the improvement of the biological functions of ELA-treated RAT BM-MSCs, so as to provide a reference for improving the efficacy of RAT BM-MSCs in MI. METHODS: Rat BM-MSCs were isolated from 80 to 120 g Sprague Dawley rats by flushing femurs and tibias under the aseptic condition. RAT BM-MSCs of the third passage were divided into control group, hypoxic/ischemic (H/I) group, ELA group, ELA-LY group and LY group. RAT BM-MSCs were cultured under normoxia in control group. In H/I group, RAT BM-MSCs were exposed to hypoxia (1% O2) and serum deprivation for 24 h. RAT BM-MSCs in ELA group were treated with 5 µM ELA prior to the H/I exposure for 24 h. The PI3K/AKT inhibitor, LY294002 (50 µM), was used in ELA-LY group and LY group to observe the effect of ELA on PI3K/AKT activation. Cell proliferation ability was examined by CCK-8. Cell cycle was assessed with flow cytometry. Cell migration was evaluated by Transwell assay. Expression levels of total-AKT, phosphorylated-AKT, and cell cycle-associated proteins were examined by Western blotting. RESULTS: ELA-treated RAT BM-MSCs exhibited significantly higher proliferation ability, cell viability, and migration under H/I conditions. The cell cycle analysis showed that an increased proportion of cells in the S and G2/M phases of the cell cycle were observed in ELA-treated RAT BM-MSCs. The addition of ELA activated the PI3K/AKT signaling pathway. Additionally, upon treating with the inhibitor of the PI3K/AKT signaling pathway, ELA-triggered proliferation, cell viability, and migration were abrogated. CONCLUSIONS: ELA can be used to enhance the proliferation ability, cell viability, and migration of RAT BM-MSCs through the PI3K/AKT signaling pathway and alleviate cell cycle arrest at the G0/G1 phase under hypoxic and ischemic injury. Thus, this study provides a promising strategy that ELA may help to optimize the mesenchymal stem cell-based therapy in MI.


Asunto(s)
Células Madre Mesenquimatosas , Hormonas Peptídicas , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea , Ciclo Celular , División Celular , Hipoxia de la Célula , Proliferación Celular , Hipoxia/metabolismo , Isquemia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
3.
Stem Cell Res Ther ; 11(1): 541, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317626

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. OBJECTIVE: We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. METHODS: MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 µM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. RESULTS: We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. CONCLUSION: ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Animales , Apoptosis , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Hormonas Peptídicas , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...