Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.753
Filtrar
1.
ACS Nano ; 18(20): 13298-13307, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727530

RESUMEN

As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.

2.
Sci Rep ; 14(1): 10771, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730053

RESUMEN

For the first time, a control strategy based on Fuzzy Sliding Mode Control is implemented in the control of a large amplitude limit cycle of a composite cantilever beam in a multi-dimensional nonlinear form. In the dynamic model establishment of the investigated structure, the higher-order shearing effect is applied, as well as the second-order discretization. Numerical simulation demonstrates that a multi-dimensional nonlinear dynamic system of the investigated structure is demanded for accurate estimation of large amplitude limit cycle responses. Therefore, a control strategy is employed to effectively suppress such responses of the beam in multi-dimensional nonlinear form.

3.
Water Res ; 257: 121622, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38733961

RESUMEN

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants that have been found in marine ecosystems. This review aims to explore the sources and mechanisms of PAHs and MPs mixed contamination in marine environments. Understanding the released sources of PAHs and MPs is crucial for proposing appropriate regulations on the release of these contaminants. Additionally, the mechanisms of co-occurrence and the role of MPs in distributing PAHs in marine ecosystems were investigated in detail. Moreover, the chemical affinity between PAHs and MPs was proposed, highlighting the potential mechanisms that lead to their persistence in marine ecosystems. Moreover, we delve into the various factors influencing the co-occurrence, chemical affinity, and distribution of mixed contaminants in marine ecosystems. These factors, including environmental characteristics, MPs properties, PAHs molecular weight and hydrophobicity, and microbial interactions, were critically examined. The co-contamination raises concerns about the potential synergistic effects on their degradation and toxicity. Interesting, few studies have reported the enhanced photodegradation and biodegradation of contaminants under mixed contamination compared to their individual remediation. However, currently, the remediation strategies reported for PAHs and MPs mixed contamination are scarce and limited. While there have been some initiatives to remove PAHs and MPs individually, there is a lack of research specifically targeting the removal of mixed contaminants. This deficiency highlights the need for further investigation and the development of effective remediation approaches for the efficient remediation of PAHs and MPs from marine ecosystems.

4.
Chemistry ; : e202401400, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736421

RESUMEN

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.

5.
Chemosphere ; 359: 142258, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719119

RESUMEN

Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.

6.
Comput Struct Biotechnol J ; 23: 1786-1795, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38707535

RESUMEN

The rapid growth of spatially resolved transcriptomics technology provides new perspectives on spatial tissue architecture. Deep learning has been widely applied to derive useful representations for spatial transcriptome analysis. However, effectively integrating spatial multi-modal data remains challenging. Here, we present ConGcR, a contrastive learning-based model for integrating gene expression, spatial location, and tissue morphology for data representation and spatial tissue architecture identification. Graph convolution and ResNet were used as encoders for gene expression with spatial location and histological image inputs, respectively. We further enhanced ConGcR with a graph auto-encoder as ConGaR to better model spatially embedded representations. We validated our models using 16 human brains, four chicken hearts, eight breast tumors, and 30 human lung spatial transcriptomics samples. The results showed that our models generated more effective embeddings for obtaining tissue architectures closer to the ground truth than other methods. Overall, our models not only can improve tissue architecture identification's accuracy but also may provide valuable insights and effective data representation for other tasks in spatial transcriptome analyses.

7.
Anal Chem ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709576

RESUMEN

Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.

8.
Anal Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717175

RESUMEN

Ultraphotostable phosphorescent nanosensors have been designed for continuously sensing the lysosome pH over a long duration. The nanosensors exhibited excellent photostability, high accuracy, and capability to measure pH values during cell proliferation for up to 7 days. By arranging a metal-ligand complex of long phosphorescence lifetime and pH indicator in silica nanoparticles, we discover efficient Förster resonance energy transfer, which converts the pH-responsive UV-vis absorption signal of the pH indicator into a phosphorescent signal. Both the phosphorescent intensity and lifetime change at different pH values, and intracellular pH values can be accurately measured by our custom-built rapid phosphorescent lifetime imaging microscopy. The excellent photostability, high accuracy, and good biocompatibility prove that these nanosensors are a useful tool for tracing the fluctuation of pH values during endocytosis. The methodology can be easily adapted to design new nanosensors with different pKa or for different kinds of intracellular ions, as there are hundreds of pH and ion indicators readily available.

9.
Ecol Evol ; 14(5): e11319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694746

RESUMEN

The family Limacodidae belongs to the superfamily Zygaenoidea, which includes 1672 species commonly referred to as slug moths. Limacodidae larvae are major pests for many economically important plant species and can cause human dermatitis. At present, the structure of the mitochondrial genome (mitogenome), phylogenetic position, and adaptive evolution of slug moths are poorly understood. Herein, the mitogenomes of Parasa lepida, Phlossa conjuncta, Thosea sinensis, and Setora sinensis were sequenced and compared with other available mitogenome sequences to better characterize the mitogenomic diversity and evolution of this moth family. The mitogenomes of P. lepida, P. conjuncta, T. sinensis, and S. sinensis were confirmed to be circular in structure with lengths of 15,575 bp, 15,553 bp, 15,535 bp, and 15,529 bp, respectively. The Limacodidae mitogenomes exhibited similar nucleotide composition, codon usage, RNA structure, and control region patterns, indicating the conservation of the mitogenome in the family Limacodidae. A sliding window, Ka/Ks, and genetic distance analyses revealed that the atp8 and nad6 genes exhibited the highest levels of variability and the most rapid evolutionary rates among the 13 protein-coding genes (PCGs) encoded in these Limacodidae mitogenomes, suggesting that they may offer value as candidate DNA markers. The phylogenetic analysis recovered the overall relationship as Tortricoidea + (Sesiidae + (Zygaenoidea + (Cossoidea/+Choreutoidea + (others)))). Within Zygaenoidea, Limacodidae was recovered as monophyletic, and the phylogenetic relationships were recovered as (Phaudidae + Zyganidae) + Limacodidae in all six phylogenetic trees. The analysis indicated that P. lepida, P. conjuncta, T. sinensis, and S. sinensis are members of the Limacodidae.

10.
Gastroenterol Rep (Oxf) ; 12: goae047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770016

RESUMEN

Background: Traditional right hemicolectomy (TRH) is the standard treatment for patients with nonmetastatic right colon cancer. However, the ileocecum, a vital organ with mechanical and immune functions, is removed in these patients regardless of the tumor location. This study aimed to evaluate the technical and oncological safety of laparoscopic ileocecal-sparing right hemicolectomy (LISH). Method: Patients who underwent LISH at two tertiary medical centers were matched 1:2 with patients who underwent TRH by propensity score matching based on sex, age, body mass index, tumor location, and disease stage. Data on surgical and perioperative outcomes were collected. Oncological safety was evaluated in a specimen-oriented manner. Lymph nodes (LNs) near the ileocolic artery (ICA) were examined independently in the LISH group. Disease outcomes were recorded for patients who completed one year of follow-up. Results: In all, 34 patients in the LISH group and 68 patients in the TRH group were matched. LISH added 8 minutes to the dissection of LNs around the ileocolic vessels (groups 201/201d, 202, and 203 LNs), without affecting the total operation time, blood loss, or perioperative adverse event rate. Compared with TRH, LISH had a comparable lymphadenectomy quality, specimen quality, and safety margin while preserving a more functional bowel. The LISH group had no cases of LN metastasis near the ICA. No difference was detected in the recurrence rate at the 1-year follow-up time point between the two groups. Conclusion: In this dual-center study, LISH presented comparable surgical and oncological safety for patients with hepatic flexure or proximal transverse colon cancer.

11.
Med Sci Monit ; 30: e943228, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764217

RESUMEN

BACKGROUND Thyroid nodule prevalence reaches 65% in the general population. Hence, appropriate ultrasonic examination is key in disease monitoring and management. We investigated the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) score for diagnosis of benign and malignant thyroid nodules and pathological types. MATERIAL AND METHODS A retrospective study was conducted. According to ultrasound images, ultrasonic characteristics of benign and malignant thyroid nodules and different pathological types were analyzed using ACR-TIRADS score, and diagnostic value was determined. AUCs were compared for tumor diagnosis and differentiation. RESULTS Overall, 1675 thyroid nodules from 1614 patients were included. AUC value of papillary thyroid carcinoma (PTC) diagnosed with ACR-TIRADS was highest (0.955 [95% CI=0.946-0.965]), while that of follicular thyroid carcinoma (FTC) was lowest (0.877 [95% CI=0.843-0.912]). FTC had the highest sensitivity (95.1%) and lowest specificity (64.8%). When the cut-off value was 5.5 points, accuracy of diagnosing PTC and anaplastic thyroid carcinoma (ATC) was highest, 80.5% and 78.7% respectively. Comparison of the multi-index prediction model constructed by multivariable logistic regression analysis and prediction model constructed by ACR-TIRADS score showed, when evaluating PTC and ATC, the multi-index model was better: AUCs of PTC were 0.966 vs 0.955, and AUCs of ATC were 0.982 vs 0.952, respectively, (P<0.05). CONCLUSIONS ACR-TIRADS score-based ultrasound examination of thyroid nodules aids diagnosis of benign and malignant thyroid nodules. TIRADS criteria favor diagnosis of PTC (and ATC) over FTC. ACR-TIRADS score can help clinicians diagnose thyroid nodules quickly and earlier, exhibits good clinical value, and can prevent missed diagnoses.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Ultrasonografía , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/patología , Nódulo Tiroideo/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Adulto , Ultrasonografía/métodos , Estudios Retrospectivos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/diagnóstico , Diagnóstico Diferencial , Anciano , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/patología , Glándula Tiroides/patología , Glándula Tiroides/diagnóstico por imagen , Sensibilidad y Especificidad , Adenocarcinoma Folicular/diagnóstico por imagen , Adenocarcinoma Folicular/patología , Adenocarcinoma Folicular/diagnóstico , Curva ROC
12.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38765956

RESUMEN

Spatially resolved transcriptomics have enabled the inference of gene expression patterns within two and three-dimensional space, while introducing computational challenges due to growing spatial resolutions and sparse expressions. Here, we introduce scBSP, an open-source, versatile, and user-friendly package designed for identifying spatially variable genes in large-scale spatial transcriptomics. scBSP implements sparse matrix operation to significantly increase the computational efficiency in both computational time and memory usage, processing the high-definition spatial transcriptomics data for 19,950 genes on 181,367 spots within 10 seconds. Applied to diverse sequencing data and simulations, scBSP efficiently identifies spatially variable genes, demonstrating fast computational speed and consistency across various sequencing techniques and spatial resolutions for both two and three-dimensional data with up to millions of cells. On a sample with hundreds of thousands of sports, scBSP identifies SVGs accurately in seconds to on a typical desktop computer.

13.
Discov Oncol ; 15(1): 178, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771435

RESUMEN

OBJECTIVE: Melanoma, with its high degree of malignancy, stands as one of the most dangerous skin cancers and remains the primary cause of death from skin cancer. With studies demonstrating the potential of traditional Chinese medicine to intervene and treat melanoma, we turned our attention to celastrol. Celastrol is a triterpene compound extracted from the traditional Chinese medicine derived from Tripterygium wilfordii. Previous studies have shown that celastrol exerts inhibitory effects on various malignant tumors, including melanoma. Hence, our goal was to clarify the impact of celastrol on cell viability, apoptosis, and cell cycle progression by elucidating its effects on the PI3K/AKT/mTOR pathway. METHODS: CCK-8 and wound healing assays were used to determine the effect of celastrol on the viability and migration of B16-F10 cells. Changes in cell apoptosis, cell cycle, reactive oxygen species (ROS), and mitochondrial membrane potential were detected by flow cytometry. PI3K/AKT/mTOR pathway proteins and HIF-α mRNA expression in B16-F10 cells were detected by western blotting and qPCR. Moreover, the addition of a PI3K activator demonstrated that celastrol could inhibit the function of B16-F10 cells via the PI3K/AKT/mTOR pathway. RESULTS: Celastrol inhibited the viability and migration of B16-F10 cells. Through the inhibition of the PI3K/AKT/mTOR pathway down-regulates the expression of HIF-α mRNA, thereby causing an increase of ROS in cells and a decrease in the mitochondrial membrane potential to promote cell apoptosis and cell cycle arrest. The inhibitory effect of celastrol on B16-F10 cells was further demonstrated by co-culturing with a PI3K activator. CONCLUSION: Celastrol inhibits the function of B16-F10 cells by inhibiting the PI3K/AKT/mTOR cellular pathway and regulating the expression of downstream HIF-α mRNA.

14.
Int J Oncol ; 64(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757345

RESUMEN

Hepatocellular carcinoma (HCC), one of the leading causes of cancer­related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi­tyrosine kinase inhibitors approved for first­line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non­apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Inmunoterapia , Neoplasias Hepáticas , Necroptosis , Piroptosis , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Piroptosis/efectos de los fármacos , Piroptosis/inmunología , Ferroptosis/efectos de los fármacos , Necroptosis/inmunología , Necroptosis/efectos de los fármacos , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Transducción de Señal/efectos de los fármacos , Animales
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38762789

RESUMEN

Identifying drug-target interactions (DTIs) holds significant importance in drug discovery and development, playing a crucial role in various areas such as virtual screening, drug repurposing and identification of potential drug side effects. However, existing methods commonly exploit only a single type of feature from drugs and targets, suffering from miscellaneous challenges such as high sparsity and cold-start problems. We propose a novel framework called MSI-DTI (Multi-Source Information-based Drug-Target Interaction Prediction) to enhance prediction performance, which obtains feature representations from different views by integrating biometric features and knowledge graph representations from multi-source information. Our approach involves constructing a Drug-Target Knowledge Graph (DTKG), obtaining multiple feature representations from diverse information sources for SMILES sequences and amino acid sequences, incorporating network features from DTKG and performing an effective multi-source information fusion. Subsequently, we employ a multi-head self-attention mechanism coupled with residual connections to capture higher-order interaction information between sparse features while preserving lower-order information. Experimental results on DTKG and two benchmark datasets demonstrate that our MSI-DTI outperforms several state-of-the-art DTIs prediction methods, yielding more accurate and robust predictions. The source codes and datasets are publicly accessible at https://github.com/KEAML-JLU/MSI-DTI.


Asunto(s)
Descubrimiento de Drogas , Biología Computacional/métodos , Algoritmos , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-38761998

RESUMEN

BACKGROUND: Previous study implied that local M2 polarization of macrophage promoted mucosal edema and exacerbates Th2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We thought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: RT-qPCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5 knockout mice were used to establish nasal polyp model with Th2 inflammation and investigate the effects of SIRT5 in macrophages on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophages markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5 deficiency mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages through promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting the alternative polarization of macrophage and thus provides a potential target for CRSwNP interventions.

17.
Front Nutr ; 11: 1351797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751736

RESUMEN

Background: AAA is a fatal condition that commonly occurs during vascular surgery. Nutritional status exerts a significant influence on the prognosis of various pathological conditions Scores from the CONUT screening tool have been shown to predict outcomes of certain malignancies and chronic diseases. However, the ramifications of nutritional status on AAA patients undergoing EVAR have not been elucidated in prior studies. In this study, we aimed to elucidate the correlation between CONUT scores and postoperative prognostic outcomes in patients with AAA undergoing EVAR. Methods: This was a retrospective review of 177 AAA patients treated with EVAR from June 2018 to November 2019 in a single center. Patient characteristics, CONUT scores, and postoperative status were collected. These patients were stratified into groups A and B according to CONUT scores. Subsequently, a comparative analysis of the baseline characteristics between the two cohorts was conducted. Cox proportional hazards and logistic regression analyses were employed to identify the autonomous predictors of mid-term mortality and complications, respectively. Results: Compared with group A, patients in group B had higher midterm mortality (p < 0.001). Univariate analysis showed that CONUT scores; respiratory diseases; stent types; preoperative Hb, CRP, PT, and Fb levels were risk factors for death. Multivariate analysis confirmed that CONUT score [HR, 1.276; 95% CI, 1.029-1.584; p = 0.027] was an independent risk factor for mortality. Logistic regression analysis showed that prior arterial disease, smoking, and D-dimer levels were risk factors, although multivariate analysis showed smoking (OR, 3.492; 95% CI, 1.426-8.553; p = 0.006) was an independent risk factor. Kaplan-Meier curves showed that patients in group B had shorter mid-term survival than those in group A (log-rank p < 0.001). Conclusion: Malnutrition was strongly associated with mid-term mortality in patients with infrarenal AAA treated with EVAR.

18.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701635

RESUMEN

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

19.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727159

RESUMEN

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Asunto(s)
Glucósidos , Lesión Pulmonar , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenoles , Sirtuina 1 , Animales , Glucósidos/farmacología , Glucósidos/uso terapéutico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Lesión Pulmonar/tratamiento farmacológico , Material Particulado/toxicidad , Material Particulado/efectos adversos , Tamaño de la Partícula , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
20.
Pharmacology ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744264

RESUMEN

INTRODUCTION: Trastuzumab is commonly used in the treatment of human epidermal growth factor receptor-2 positive (HER-2+) breast cancer patients, but its efficacy is often limited by chemotherapy resistance. Recent studies indicate that long noncoding RNAs (lncRNAs) play important roles in tumor progression and response to therapy. However, the regulatory mechanism of lncRNAs in trastuzumab resistance is still unknown to date. METHODS: qPCR was performed to detect the expression of related genes. Western blot and immunofluorescence assays were used for the evaluation of protein expression levels. A series of gain- or loss-functional assays confirmed the function of AGAP2-AS1 in trastuzumab resistance, both in vitro and in vivo. RNA immunoprecipitation and pulldown analysis was conducted to verify the interaction between METTL3/YTHDF2 and lncRNA AGAP2-AS1. , Results: AGAP2-AS1 was upregulated in trastuzumab-resistant cells and SKBR-3R-generated xenograft in nude mice. Silence of AGAP2-AS1 significantly decreased trastuzumab-induced cell cytotoxicity both in vitro and in vivo. The m6A methylation of AGAP2-AS1 was found to be reduced in trastuzumab resistant cells compared to parental cells. In addition, METTL3 increased the m6A methylation of AGAP2-AS1, which finally induced the suppression of AGAP2-AS1 expression. Moreover, YTHDF2 was essential for METTL3-mediated m6A methylation of AGAP2-AS1. Functionally, AGAP2-AS1 regulated trastuzumab resistance via inducing autophagy and increasing ATG5 protein level. CONCLUSION: Taken together, we proved that METTL3/YTHDF2-mediated m6A methylation indued the increased expression AGAP2-AS1, which could promote the trastuzumab resistance of breast cancer. In addition, AGAP2-AS1 also regulates trastuzumab resistance via inducing autophagy. Therefore, AGAP2-AS1 may be promising predictive biomarker and therapeutic target breast cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA