Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Curr Res Food Sci ; 9: 100815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161885

RESUMEN

Cranberry is abundantly rich in anthocyanins, a type of flavonoid with potent antioxidant properties and the resistance against certain diseases. In this study, anthocyanin-rich cranberry extract was extracted, purified, and its components were analyzed. 92.18 % of anthocyanins was obtained and the total content of anthocyanins was 302.62 mg/g after AB-8 resin purification. Quantification analysis showed that the extract mainly contained cyanidin-3-galactoside, procyanidin B2 and procyanidin B4. Then we explored its effects on dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice. The supplementation of cranberry extract resulted in an alleviation of IBD symptoms, evidenced by improvements in the disease activity index (DAI), restoration of colon length and colonic morphology. Cranberry extract reversed the elevated iron and malondialdehyde (MDA) levels and restored glutathione (GSH) levels in IBD mice. Further analysis revealed that cranberry modulated ferroptosis-associated genes and reduced expression of pro-inflammatory cytokines. Although cranberry influenced the intestinal flora balance by reducing Proteobacteria and Escherichia-Shigella, and increasing Lactobacillus, as well as enhancing SCFAs content, these effects were not entirely dependent on intestinal flora modulation, as indicated by antibiotic intervention and fecal microbiota transplantation (FMT) experiments. In conclusion, our findings suggest that the beneficial impact of cranberry extract on IBD may primarily involve the regulation of colonic ferroptosis, independent of significant alterations in intestinal flora.

2.
Heliyon ; 10(12): e33220, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021916

RESUMEN

Seahorses are increasingly recognized for their nutritional potential, which underscores the necessity for comprehensive biochemical analyses. This study aims to investigate the fatty acid and amino acid compositions of eight seahorse species, including both genders of Hippocampus trimaculatus, Hippocampus kelloggi, Hippocampus abdominalis, and Hippocampus erectus, to evaluate their nutritional value. We employed Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC) to analyze the fatty acid and amino acid profiles of the seahorse species. GC-MS was used to detect 34 fatty acid methyl esters, while HPLC provided detailed amino acid profiles. GC-MS analysis demonstrated high precision with relative standard deviations (RSDs) generally below 2.53 %, satisfactory repeatability (RSDs from 6.55 % to 8.73 %), and stability (RSDs below 2.82 %). Recovery rates for major fatty acids ranged from 98.73 % to 109.12 %. HPLC analysis showed strong separation of amino acid profiles with theoretical plate numbers exceeding 5000. Precision tests yielded RSDs below 1.23 %, with reproducibility and stability tests showing RSDs below 2.73 % and 2.86 %, respectively. Amino acid recovery rates ranged from 97.58 % to 104.66 %. Nutritional analysis revealed significant variations in fatty acid content among the species. Female H. erectus showed higher levels of hexadecanoic acid and saturated fatty acids, while male H. abdominalis had lower concentrations of n-3 full cis 4,7,10,13,16,19-docosahexaenoic acid (DHA). Total lipid yields varied from 3.2491 % to 12.3175 %, with major fatty acids constituting 17.9717 %-74.6962 % of total lipids. In conclusion, this study provides essential insights into the fatty acid and amino acid composition of seahorses, supporting their potential as valuable dietary supplements. The differences between genders in specific fatty acids suggest a nuanced nutritional profile that could be exploited for targeted dietary applications. Further research is needed to explore the seasonal and environmental variations affecting seahorse biochemical composition.

3.
Metab Brain Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034364

RESUMEN

Ginsenoside Rb1, known as gypenoside III, exerts antidepressant-like effects in previous studies. It has also been indicated that ginsenoside Rb1 regulated neuroinflammation via inhibiting NF-κB signaling. According to the evidence that astrocytes can regulate microglia and neuroinflammation by secreting complement C3, the present study aimed to demonstrate the molecular mechanisms underlying ginsenoside Rb1-induced antidepressant-like effects from the astrocytic and microglial complement C3 pathway. The complement C3 mediated mechanism of ginsenoside Rb1 was investigated in mice exposed to chronic restraint stress (CRS). The results showed that ginsenoside Rb1 reversed the depressive-like behaviors in CRS. Treatment with ginsenoside Rb1 reduced both the number of astrocytes and microglia. In addition, ginsenoside Rb1 suppressed TLR4/NF-κB/C3 signaling in the astrocytes of the hippocampus. Furthermore, ginsenoside Rb1 attenuated the contents of synaptic protein including synaptophysin and PSD95 in microglia, suggesting the inhibition of microglia-mediated synaptic elimination caused by CRS. Importantly, ginsenoside Rb1 also maintained the dendritic spines in mice. In conclusion, our results demonstrate that ginsenoside Rb1 produces the antidepressant-like effects by inhibiting astrocyte TLR4/NF-κB/C3 signaling to covert microglia from a pro-inflammatory phenotype (amoeboid) towards an anti-inflammatory phenotype (ramified), which inhibit the synaptic pruning in the hippocampus.

4.
Sci Total Environ ; 941: 173737, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844214

RESUMEN

Bacterial communities in soil and rhizosphere maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs and antibiotic resistant bacteria (ARB) are well-characterized under traditional farming practices. Here we compared the ARG profiles of maize rhizosphere and their bulk soils using metagenomic analysis to identify the ARG dissemination and explored the potential impact of chemical fertilization on ARB. Results showed a relatively lower abundance but higher diversity of ARGs under fertilization than straw-return. Moreover, the abundance and diversity of MGEs were significantly promoted by chemical fertilizer inputs in the rhizosphere compared to bulk soil. Machine learning and bipartite networks identified three bacterial genera (Pseudomonas, Bacillus and Streptomyces) as biomarkers for ARG accumulation. Thus we cultured 509 isolates belonging to these three genera from the rhizosphere and tested their antimicrobial susceptibility, and found that multi-resistance was frequently observed among Pseudomonas isolates. Assembly-based tracking explained that ARGs and four class I integrons (LR134330, LS998783, CP065848, LT883143) were co-occurred among contigs from Pseudomonas sp. Chemical fertilizers may shape the resistomes of maize rhizosphere, highlighting that rhizosphere carried multidrug-resistant Pseudomonas isolates, which may pose a risk to animal and human health. This study adds knowledge of long-term chemical fertilization on ARG dissemination in farmland systems and provides information for decision-making in agricultural production and monitoring.


Asunto(s)
Agricultura , Fertilizantes , Rizosfera , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Agricultura/métodos , Bacterias , Farmacorresistencia Microbiana/genética , Suelo/química , Genes Bacterianos
5.
J Hazard Mater ; 474: 134771, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861898

RESUMEN

Nickel oxide nanoparticles (NiO-NPs) are common nanomaterials that may be released into the environment, affecting the toxicity of other contaminants. Atrazine (ATZ) is a commonly used herbicide that can harm organisms due to its persistence and bioaccumulation in the environment. Although the toxicity of ATZ to earthworms is well-documented, the risk of co-exposure with NiO-NPs increases as more nanoparticles accumulate in the soil. In this study, we investigated the effects and mechanisms of NiO-NPs on the accumulation of ATZ in earthworms. The results showed that after day 21, the antioxidant system of the cells under ATZ treatment alone was adversely affected, with ROS content 36.05 % higher than that of the control (CK) group. However, the addition of NiO-NPs reduced the ROS contents in the earthworms by 0.6 %- 32.3 %. Moreover, analysis of earthworm intestinal sections indicates that NiO-NPs mitigated cellular and tissue damage caused by ATZ. High-throughput sequencing revealed that NiO-NPs in earthworm intestines increased the abundance of Pseudomonas aeruginosa and Aeromonas aeruginosa. Additionally, the enhanced function of the ABC transport system in the gut resulted in lower accumulation of ATZ in earthworms. In summary, NiO-NPs can reduce the accumulation and thus the toxicity of ATZ in earthworms. Our study contributes to a deeper understanding of the effects of NiO-NPs on co-existing pollutants.


Asunto(s)
Atrazina , Herbicidas , Nanopartículas del Metal , Níquel , Oligoquetos , Especies Reactivas de Oxígeno , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Oligoquetos/metabolismo , Atrazina/toxicidad , Animales , Níquel/toxicidad , Herbicidas/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno/metabolismo
6.
J Cardiothorac Surg ; 19(1): 297, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778306

RESUMEN

BACKGROUND: Despite the existence of several Randomized Controlled Trials (RCTs) investigating Low-Dose Computed Tomography (LDCT) as a guide in lung biopsies, conclusive findings remain elusive. To address this contention, we conducted a systematic review and meta-analysis to evaluate the efficacy and safety of LDCT-guided lung biopsies. METHODS: A comprehensive search across major databases identified RCTs comparing the effectiveness of LDCT-guided with Standard-Dose Computed Tomography (SDCT)-guided lung biopsies. Subsequently, we utilized a random-effects model meta-analysis to assess diagnostic accuracy, radiation dose, operation duration, and clinical complications associated with these procedures. RESULTS: Out of 292 scrutinized studies, six RCTs representing 922 patients were included in the final analysis. Results indicated the differences between the LDCT and SDCT groups were not different with statistical significance in terms of diagnostic accuracy rates (Intent-to-Treat (ITT) populations: Relative Risk (RR) 1.01, 95% Confidence interval [CI] 0.97-1.06, p = 0.61; Per-Protocol (PP) populations: RR 1.01, 95% CI 0.98-1.04, p = 0.46), incidence of pneumothorax (RR 1.00, 95% CI 0.75-1.35, p = 0.98), incidence of hemoptysis (RR 0.95, 95% CI 0.63-1.43, p = 0.80), and operation duration (minutes) (Mean Differences [MD] -0.34, 95% CI -1.67-0.99, p = 0.61). Notably, LDCT group demonstrated a lower radiation dose (mGy·cm) with statistical significance (MD -188.62, 95% CI -273.90 to -103.34, p < 0.0001). CONCLUSIONS: The use of LDCT in lung biopsy procedures demonstrated equivalent efficacy and safety to standard methods while notably reducing patient radiation exposure.


Asunto(s)
Biopsia Guiada por Imagen , Pulmón , Dosis de Radiación , Ensayos Clínicos Controlados Aleatorios como Asunto , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Pulmón/patología , Pulmón/diagnóstico por imagen , Biopsia Guiada por Imagen/métodos , Biopsia Guiada por Imagen/efectos adversos
7.
Heliyon ; 10(8): e29485, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660276

RESUMEN

Objective: Ramucirumab is a VEGFR2 antagonist. The aim of this trial is to evaluate the efficacy and safety of ramucirumab combined with nab-paclitaxel, lobaplatin and S-1 in neoadjuvant and conversion therapy for advanced gastric cancer. Methods: and analysis: This study is a prospective single-center, randomized controlled and open label clinical study, enrolling a total of 140 patients with advanced gastric cancer distributed across two distinct cohorts (Cohort A n = 70; Cohort B n = 70). The central focus of the study lies in evaluating the pathological complete response (pCR) of the cancer post-neoadjuvant or conversion therapy. Secondary endpoints encompass the assessment of the R0 resection rate subsequent to the aforementioned therapies, the occurrence of adverse events (AE), progression-free survival (PFS), overall survival (OS), the objective response rate (ORR), the total response rate and its duration, the disease control rate (DCR), and the duration of overall response (DOR). Ethics: Ethics approval has been obtained from the Ethics Committee at the First Affiliated Hospital (Xijing Hospital) of Air force Military Medical University (KY20232220-F-1). Trial registration: This trial has been registered at the ClinicalTrials.gov: NCT06169410 (registration date: December 5, 2023).

8.
J Hazard Mater ; 470: 134249, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603909

RESUMEN

In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.


Asunto(s)
Microplásticos , Polietileno , Polipropilenos , Microbiología del Suelo , Contaminantes del Suelo , Ureasa , Polietileno/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Ureasa/metabolismo , Congelación , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Suelo/química
9.
World Neurosurg ; 184: e468-e485, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310951

RESUMEN

BACKGROUND: This study aimed to establish a precise preoperative high-risk factor scoring system and algorithm for antibiotic prophylaxis decision-making, provide guidance for the judicious use of AMP, refine interventions, and ensure the appropriate application of AMP for class I incisions in neurosurgery. METHODS: According to PRISMA guidelines, literature searches, study selection, methodology development, and quality appraisal were performed. The quality of evidence across the study population was assessed using the Newcastle-Ottawa Scale. A two-round Delphi expert consultation method involved 15 experts from leading tertiary hospitals in China. Establishing an algorithm of SOPs for perioperative antimicrobial prophylaxis in Class I neurosurgical incisions. RESULTS: Thirteen studies, encompassing 11,936 patients undergoing clean neurosurgical procedures, were included. 791 patients experienced SSI, resulting in an average incidence of 6.62%. Identified risk factors significantly associated with an increased incidence of postoperative SSI (P < 0.05) included emergency surgery, preoperative hospitalization ≥7 days, intraoperative blood loss ≥300 mL, operation time ≥4 hours, diabetes mellitus, cerebrospinal fluid leakage, and repeat surgery. Sensitivity analysis demonstrated robust results for emergency surgery, intraoperative blood loss ≥300 mL, operation time ≥4 hours, cerebrospinal fluid leakage, and repeat surgery. Established a risk assessment system for Class I neurosurgical incisions by the Delphi method. Additionally, we have formulated an algorithm of SOPs for perioperative antimicrobial prophylaxis in Class I neurosurgical incisions. CONCLUSIONS: The established index for AMP utilization and SOPs in the preoperative period of class I neurosurgical incisions proves valuable, contributing to improved patient outcomes in neurosurgical procedures.


Asunto(s)
Antiinfecciosos , Neurocirugia , Herida Quirúrgica , Humanos , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/etiología , Pérdida de Sangre Quirúrgica , Procedimientos Neuroquirúrgicos/efectos adversos , Profilaxis Antibiótica/métodos , Antiinfecciosos/uso terapéutico , Periodo Perioperatorio , Pérdida de Líquido Cefalorraquídeo/etiología
10.
J Hazard Mater ; 467: 133758, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38350318

RESUMEN

Herbicide residue and greenhouse gas (GHG) emission are two main problems in the paddy rice field, which have barely been considered simultaneously. Herein, a bensulfuron-methyl (BSM)-degrading bacterium named Acinetobacter YH0317 was successfully immobilized on two kinds of biochars and subsequently applied in the paddy soil. The BSM removal rate of Acinetobacter YH0317 immobilized boron-doping biochar (BBC) was 80.42% after 30 d, which was significantly higher than that of BBC (39.05%) and Acinetobacter YH0317 (49.10%) applied alone. BBC acting as an immobilized carrier could enable Acinetobacter YH0317 to work in harsh and complex environment and thus improve the BSM removal efficiency. The addition of Acinetobacter YH0317 immobilized BBC (TP5) significantly improved the soil physicochemical properties (pH, SOC, and NH4+-N) and increased the diversity of soil microbial community compared to control group (CG). Meanwhile, Acinetobacter YH0317 immobilized BBC reduced the CO2-equivalent emission by 41.0%. Metagenomic sequencing results revealed that the decreasing CO2 emission in TP5 was correlated with carbon fixation gene (fhs), indicating that fhs gene may play an important role in reducing CO2 emission. The work presents a practical and supportive technique for the simultaneous achievement on the soil purification and GHG emission reduction in paddy soil.


Asunto(s)
Acinetobacter , Carbón Orgánico , Gases de Efecto Invernadero , Compuestos de Sulfonilurea , Boro , Dióxido de Carbono , Suelo
11.
Curr Opin Genet Dev ; 84: 102147, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38176333

RESUMEN

DNA methylation is a conserved epigenetic modification associated with transposon silencing and gene regulation. The stability of this modification relies on intimate connections between DNA and histone modifications that generate self-reinforcing loops wherein the presence of one mark promotes the other. However, it is becoming increasingly clear that the efficiency of these loops is affected by cross-talk between pathways and by chromatin accessibility, which is heavily influenced by histone variants. Focusing primarily on plants, this review provides an update on the aforementioned self-reinforcing loops, highlights recent advances in understanding how DNA methylation pathways are restricted to prevent encroachment on genes, and discusses the roles of histone variants in compartmentalizing epigenetic pathways within the genome. This multilayered approach facilitates two essential, yet opposing functions, the ability to maintain heritable DNA methylation patterns while retaining the flexibility to modify these patterns during development.


Asunto(s)
Metilación de ADN , Histonas , Metilación de ADN/genética , Histonas/metabolismo , Silenciador del Gen , Cromatina/genética , Epigénesis Genética/genética
12.
ACS Omega ; 9(2): 2866-2873, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250406

RESUMEN

The flow law of immiscible fluids in porous media plays an important role in the development of oil and gas fields. In the process of water flooding reservoir development, when the water phase displaces the oil phase, a fluid with higher viscosity, as a fluid with lower viscosity, the oil-water interface will always be unstable, resulting in different fingering effects. After water flooding, the distribution law of oil and water in the reservoir is mainly affected by the fluid intrusion mechanism. Due to the difference of capillary force, viscous force, and other microscopic forces, the fluid intrusion mechanism is mainly divided into two types: viscous fingering and capillary fingering. At the same time, due to the influence of reservoir heterogeneity, the fingering effect in the process of water displacement in porous media will be influenced to a certain extent. Based on the two-dimensional microscopic visualization experiment, this paper extracted the variance of the static parameter G in the capillary number calculation method of the two-dimensional microscopic model to represent the heterogeneity and conducted displacement experiments with different viscosities and flow rates to study the influence of the flow rate, viscosity, and heterogeneity on the results of water flooding. The experiments found that as for the influence of flow velocity, with the increase of flow velocity, that is, with the increase of capillary number, the recovery degree decreases first and then increases. As for the influence of viscosity, from a numerical point of view, the displacement efficiency and conformance coefficient of the low-viscosity group are higher than those of the high-viscosity group. From the trend, with the increase of the capillary number, the displacement efficiency of both the low-viscosity and high-viscosity groups increases, while the conformance coefficient decreases first and then increases, indicating that capillary fingering and viscous fingering can occur in different viscosity reservoirs. As for the influence of heterogeneity, the conformance coefficient of the water flooding decreases with the increase of heterogeneity, and the viscous pointing trend caused by heterogeneity is stronger, resulting in an uneven water injection sweep and higher oil displacement efficiency within the swept area. It can be seen from the fluid intrusion mechanism diagram that with the increase of heterogeneity, the viscous fingering trend becomes more obvious; with the increase of viscosity, the fluid intrusion mechanism boundary moves down and the viscous fingering trend becomes more obvious.

13.
Sci Total Environ ; 912: 169293, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104810

RESUMEN

Effects of microplastics (MPs) and nanoplastics (NPs) on the spread of antibiotic resistance genes (ARGs) in soil-plant systems are still unclear. To investigate the spread and mechanisms of ARGs from soil to lettuce, lettuce was exposed to soil spiked with two environmentally relevant concentrations of polystyrene MPs (100 µm) and NPs (100 nm). Results showed that microorganisms that carried ARGs in soil were increased after exposure to MPs/NPs, which led to an increase in ARGs in roots. NPs were absorbed by roots and can be transported to leaves. Analysis of transcriptomics, proteomics and metabolomics indicated that high concentration of NPs regulated the expression of related genes and proteins and improved the accumulation of flavonoids in the lettuce, therefore decreased the abundance of microorganisms that contained ARGs. Our work emphasizes the size and dose influences of MPs and NPs on the spread of ARGs from soil to plant.


Asunto(s)
Plásticos , Poliestirenos , Microplásticos , Lactuca , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Suelo , Genes Bacterianos
14.
Sci Total Environ ; 908: 168421, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951267

RESUMEN

Engineered nanoparticles (ENPs) and nanoplastics (NPs) are typical nanoparticles in terrestrial environments. Till now, few studies have compared their toxicity and mechanism to plants. Here we investigated the effects of CuO, nZVI ENPs and polystyrene (PS) NPs on lettuce growth, metabolic functions, and microbial community structure. Results showed that low concentrations of nanoparticles decreased root biomass and promoted photosynthetic indicators, whereas increased reactive oxygen species (ROS) were detected in roots exposed to high concentrations of nanoparticles. High-dose CuO ENP exposure significantly raised the MDA content by 124.6 % compared to CK, causing the most severe membrane damage in the roots among the three types of nanoparticles. Although linoleic acid metabolism was down-regulated, the roots alleviated CuO stress by up-regulating galactose metabolism. Uptake of PS by roots similarly caused ROS production and activated the oxidative stress system by altering amino acid and vitamin metabolism. Faster microbial responses to nanoparticles were observed in the nZVI and PS networks. The root toxicity was indirectly mediated by ion release, NP uptake, or ROS generation, ultimately impacting root cell metabolism, rhizospheric microorganism and plant growth. These findings provide theoretical basis for assessing environmental impact of nanoparticles and their possible ecological risks.


Asunto(s)
Lactuca , Nanopartículas , Lactuca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Microplásticos/metabolismo , Nanopartículas/toxicidad , Nanopartículas/química , Poliestirenos/toxicidad , Poliestirenos/metabolismo
15.
ACS Appl Mater Interfaces ; 15(50): 58497-58507, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055796

RESUMEN

The shuttle effect and slow conversion kinetics of soluble polysulfides hinder the commercial application of lithium-sulfur batteries (LSBs). In this context, we propose a three-dimensional lamellar-stacked nanostructure of nickel cobalt sulfide (D-NiCo2S4) enriched with lattice defects by manipulating the cations in spinel sulfides. It has an obvious synergistic promotion mechanism for the adsorption and catalysis of lithium sulfides. Specifically, Ni3+ on tetrahedral (Td) sites with strong Ni-S covalency anchors LiPSs, whereas Co3+ on octahedral (Oh) sites promotes a highly efficient catalytic conversion of LiPSs, which is confirmed by experimental results and density functional theory (DFT) calculations. Besides, the crystal defects and distortions in the lamellar region could expose more active sites and enhance the redox reaction kinetics of polysulfides. Hence, Li-S batteries with D-NiCo2S4@S as the cathode show outstanding cycle stability; upon cycling at 1 A/g, the battery achieves a high initial specific capacity of 1001.12 and 655.31 mAh g-1 after 1000 cycles (decay rate as low as 0.05% per cycle), as well as a high initial areal capacity of 3.15 mAh cm-2 under high S loading (4.2 mg cm-2). This work provides a viable scheme for designing efficient bimetal sulfide catalysts and furnishes a rational strategy for constructing LSB cathodes with high specific capacity and high area capacity.

16.
ACS Chem Neurosci ; 14(17): 3173-3182, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37579249

RESUMEN

Depression is a multifaceted psychiatric disorder that affects a significant number of individuals worldwide, and its pathophysiology encompasses a variety of mechanisms, including the induction of endoplasmic reticulum (ER) stress, which has been correlated with depressive-like behaviors in animal models. Yamogenin, a bioactive compound derived from traditional Chinese medicine Dioscorea species, possesses diverse pharmacological properties. This investigation aimed to explore the antidepressant-like effects of yamogenin and the underlying mechanisms involved. By utilizing a murine model of lipopolysaccharide (LPS)-induced depressive-like behavior, we demonstrated that yamogenin enhanced sucrose preference and reduced immobility time in the forced swimming test. These effects were observed alongside the attenuation of ER stress through modulation of the PERK/eIF2α/ATF4/CHOP signaling pathway in the prefrontal cortex. Moreover, yamogenin augmented the expression of the antiapoptotic protein Bcl-2 while diminishing the expression of the proapoptotic protein caspase-3. Additionally, yamogenin exhibited inhibitory effects on microglial activation but did not elicit the promotion of brain-derived neurotrophic factor (BDNF) signaling. Collectively, our findings propose that yamogenin exerts antidepressant-like effects in LPS-induced mice by inhibiting ER stress and microglial activation. This study contributes novel insights into the potential utilization of yamogenin as a natural antidepressant agent.


Asunto(s)
Diosgenina , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , Microglía , Antidepresivos/farmacología , Diosgenina/farmacología , Estrés del Retículo Endoplásmico , Depresión/metabolismo
17.
Sci Total Environ ; 897: 165383, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422223

RESUMEN

To investigate the potential transfer of nanoplastics (NPs) from water to plants and subsequently to a higher trophic level, we established a food chain and evaluated the trophic transfer of polystyrene (PS) NPs based on mass concentrations by pyrolysis gas chromatography-mass spectrometry. Lettuce plants were cultivated in Hoagland solution with varying concentrations of PS-NPs (0.1, 1, 10, 100 and 1000 mg/L) for a period of 60 d and then a total of 7 g lettuce shoot was fed to snails for 27 d. Shoot biomass exposed at 1000 mg/L PS-NPs was reduced by 36.1 %. No significant change in root biomass was observed, however, root volume was reduced by 25.6 % at 100 mg/L. Moreover, PS-NPs were detected in both lettuce roots and shoots across all concentrations. Additionally, PS-NPs were transferred to snails and primarily found in feces (>75 %). Only 28 ng/g of PS-NPs were detected in the soft tissue of snails indirectly exposed at 1000 mg/L. Although PS-NPs were bio-diluted when transferred to species at higher trophic levels, they significantly inhibited the growth of snails, indicating that their potential risk to high trophic levels cannot be ignored. This study provides key information on trophic transfer and patterns of PS-NPs in food chains and helps to evaluate risk of NPs in terrestrial ecosystem.


Asunto(s)
Cadena Alimentaria , Nanopartículas , Ecosistema , Lactuca , Poliestirenos/química , Microplásticos , Nanopartículas/química
18.
Bioresour Technol ; 386: 129570, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506925

RESUMEN

Biochar-based bacteria are regarded as an efficient strategy for remediating organic pollutants in aquatic environments. Herein, a strain named Acinetobacter YH0317 that could degrade bensulfuron-methyl (BSM) at a lower temperature (15 °C) was isolated from a paddy rice field with long-term BSM application. Then Acinetobacter YH0317 was loaded on unmodified biochar (BC) and boron doping biochar (BBC). Results showed that BBC-based YH0317 significantly enhanced the removal efficiency of BSM (71.8-99.1%) compared with BC-based YH0317 (41.9-44.0%) and YH0317 alone (18.1-20.7%) in 24 h. BBC promoted the growth of YH0317 and secretion of extracellular secretions by providing a carrier and shelter for YH0317. The electrochemical analysis suggested BBC improved the electron transfer rate, which ultimately facilitated the removal of BSM. Hydroponic experiments indicated that BBC-based YH0317 effectively improved the growth of soybean. This work reports a novel BBC-based Acinetobacter YH0317 that could effectively remediate BSM contamination in the water environment.


Asunto(s)
Acinetobacter , Boro , Temperatura , Carbón Orgánico
19.
Talanta ; 265: 124837, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379754

RESUMEN

Nanoplastics (NPs) can enter the edible parts of crop and threaten human health, which attract widespread attention. However, the precise quantification of NPs in crop is still a tremendous challenge. Herein, a method with Tetramethylammonium hydroxide (TMAH) digestion, dichloromethane extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was present to quantify polystyrene (PS) NPs uptake in lettuce (Lactuca sativa). 25% of TMAH was optimized as extraction solvent and 590 °C was selected as pyrolysis temperature. Recoveries of 73.4-96.9% were obtained for PS-NPs at spiking level of 4-100 µg/g in control samples (RSD < 8.6%). The method exhibited good intra-day and inter-day reproducibility, detection limits of 34-38 ng/g and linearity with 0.998-0.999. The reliability of Py-GC/MS method was verified by europium-chelated PS using inductively coupled plasma mass spectrometry (ICP-MS). To simulate different environmental conditions, hydroponic culture and soil incubated lettuce were exposed to different concentrations of NPs. Higher levels of PS-NPs were detected in roots and very few was transferred to the shoots. NPs in lettuce were confirmed by laser scanning confocal microscopy (LSCM). The developed method provides new opportunities for the quantification of NPs in crops.


Asunto(s)
Lactuca , Microplásticos , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Lactuca/química , Reproducibilidad de los Resultados , Pirólisis , Poliestirenos/análisis
20.
J Colloid Interface Sci ; 648: 846-854, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327627

RESUMEN

Lithium-sulfur (Li-S) battery has been considered as a potential next-era energy storage device. However, its practical application is limited by the volume change of sulfur and the shuttle effect of lithium polysulfides. To effectively overcome these issues, a hollow carbon decorated with cobalt nanoparticles and interconnected by nitrogen doped carbon nanotubes (Co-NCNT@HC) is developed for high-performance Li-S battery. The uniformly distributed nitrogen and cobalt nanoparticles in Co-NCNT@HC are able to enhance the chemical adsorption capability and fasten the transformation speed of the intermediates, thus effectively inhibit the loss of lithium polysulfides. Moreover, the hollow carbon spheres interconnected by carbon nanotubes are structurally stable and electrically conductive. Due to the unique structure, the Li-S battery enhanced by Co-NCNT@HC shows a high initial capacity of 1550 mAh/g at 0.1 A g-1. Even at a high current density of 2.0 A g-1, after 1000 cycles, it still maintains a capacity of 750 mAh/g with a capacity retention of 76.4% (the capacity decay rate is only 0.037% per cycle). This study provides a promising strategy for the development of high-performance Li-S batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...