Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Water Res ; 250: 121078, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159540

RESUMEN

Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.


Asunto(s)
Celulosa , Ciclodextrinas , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Cloro/química , Desinfectantes/química , Cloruros/química , Halogenación , Trihalometanos/química , Antibacterianos/farmacología , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 341: 140056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696480

RESUMEN

Pillararene polymers have been widely used as excellent adsorbents for water treatment, but pillararene polymers with ultra-high specific surface area and versatility are still rarely reported. Herein, a quaternary ammonium salt modified pillar [5] arene polymer, QPBP [5], with specific surface area of 1844 m2 g-1 was successfully synthesized. Since QPBP [5] has abundant different adsorption sites, it exhibits excellent performance for the simultaneously removal of organic pollutants with different charges from water. The selected three model pollutants, Rhodamine B (RhB, positively charged), Sulfamethazine (SMT, electrically neutral) and Fulvic acid (FA, negatively charged), could be rapidly and efficiently removed from water by QPBP [5] within 10 min, which are much faster than them by most of the reported adsorbents. RhB and SMT are mainly adsorbed through hydrophobic interactions with the QPBP [5] surface, while FA is mainly removed through ion exchange. In addition, QPBP [5] also showed excellent reusability and adsorption performance for the environmentally relevant concentration of pollutants. Furthermore, the quaternary ammonium groups on QPBP [5] makes it a solid disinfectant with excellent antibacterial properties. In conclusion, QPBP [5] is a promising multifunctional adsorbent for the treatment of complex pollutants in water.


Asunto(s)
Desinfectantes , Contaminantes Ambientales , Purificación del Agua , Porosidad , Desinfectantes/farmacología , Polímeros
3.
Water Res ; 222: 118917, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35961197

RESUMEN

Keeping water clean is of vital significance for human health and environmental protection. In order to remove organic micro-pollutants and natural organic substances in water bodies and kill pathogenic microorganisms simultaneously, this study synthesized a multifunctional porous ß-cyclodextrin polymer with a high specific surface area by introducing quaternary ammonium groups and rigid benzene rings, respectively, which was then polymerized with crosslinking agent-4,4'-bis (chloromethyl)-1,1'-biphenyl (BCMBP) in an ionic liquid system. The grafting of quaternary ammonium groups was beneficial for the removal of negative-charged humic acid (HA) and sterilization. The introduction of numerous rigid structures during benzylation and Friedel-Crafts alkylation reaction could significantly improve the porosity and specific surface area of the polymer, conducive to the exposure of cyclodextrin binding sites and contaminant adsorption. By changing the proportions of quaternization and benzylation, the structure and surface properties of the polymer could be adjusted, thus further regulating the adsorption performance. Compared with activated carbon, the polymer named BQCD-BP with a huge surface area of 1133 m2 g-1 prepared under optimized conditions showed outstanding adsorption performance and sterilization ability. The pseudo-second-order kinetic constant of BQCD-BP reached 1.2058 g·mg-1·min-1, which was approximately 50 times greater than that of activated carbon (0.0256 g·mg-1·min-1) under the same experimental condition. The adsorption capacity of BQCD-BP to HA was twice as high as that to AC, and the antibacterial ability of BQCD-BP was significant, achieving 90% at the dosage of 1g L-1. Moreover, the adsorption process was hardly affected by the hydrochemical conditions, and the polymer was easy to regenerate. In addition, the excellent adsorption and antibacterial performance of the polymer were also identified by natural water treatment. COD was almost completely removed, and the removal efficiency of TP reached 92% after contact with BQCD-BP. The sterilization rate of BQCD-BP to viable bacteria in complex water bodies reached 82%. Undoubtedly, BQCD-BP is a potential multifunctional water treatment material with reasonable design in the actual water purification.


Asunto(s)
Compuestos de Amonio , Ciclodextrinas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos , Celulosa , Carbón Orgánico/química , Ciclodextrinas/química , Humanos , Sustancias Húmicas , Polímeros/química , Porosidad , Contaminantes Químicos del Agua/química
4.
Environ Res ; 212(Pt D): 113391, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35597293

RESUMEN

Taihu Lake is the most important drinking water source of the major cities in the Yangtze River Delta. The pollution of endocrine disruptors (EDCs)in Taihu Lake has been increasing recently, the accurate determination is an important guide for predicting its health risks and developing appropriate controls. Monitoring organic pollutants in water using the diffusive gradient in thin film technique (DGT) has attracted much attention due to more accuracy and convenience than the grab sampling methods. In this study, a novel cyclodextrin polymer (CDP) synthesized by the simple and green method in water was taken as an adsorbent for the binding gel. Four endocrine-disrupting chemicals (EDCs), bisphenol A (BPA), 17α-ethinylestradiol (EE2), 17ß-estradiol (E2), and estriol (E3), were taken as models to determine the diffusion coefficients (4.68 × 10-6, 3.38 × 10-6, 3.34 × 10-6 and 4.31 × 10-6 cm2/s) and to test the performance of DGT, such as adsorption capacity and deployment time (1-5 day). The assembled CDP-DGT was adopted to determine four EDCs in a simulated water environment (3-9 of pH, 0.001-0.5 M of ionic strength (IS), and dissolved organic matter (DOM) of 0-20 mg/L). The ability of CDP-DGT sampling was verified in the Jiuxiang River and was carried out for a large-scale field application of in situ sampling EDCs in Taihu Lake basin. The results show that the total EDCs concentration range and the estradiol equivalent concentrations (EEQ) in Taihu Lake and its main rivers are 2.78 ng/L to 11.08 ng/L and 2.62 ng/L to 10.91 ng/L, respectively. The risk quotients (RQs) of all sampling sites in the region were greater than 1, indicating that EDCs pose a serious threat to aquatic organisms in the area. Therefore, the monitoring of EDCs in the Taihu Lake basin should be further strengthened.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Celulosa , China , Ciclodextrinas , Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Estradiol , Geles , Lagos/química , Medición de Riesgo , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 806(Pt 4): 150739, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619202

RESUMEN

Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous ß-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 µg cm-2, 98.82 µg cm-2, 95.69 µg cm-2 and 98.91 µg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.


Asunto(s)
Clorofenoles , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Difusión , Monitoreo del Ambiente , Polímeros , Suelo , Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Res ; 207: 112160, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600883

RESUMEN

The combination of adsorption-photocatalysis and advanced oxidation processes (AOP) based on sulfate (SO4•-) for the treatment of organic pollution has the advantages of a high degradation rate, affordability, and an absence of secondary pollution. This study combined amphiphilic super-crosslinked porous cyclodextrin resin (PBCD-B-D), bismuth oxybromide (BiOBr), a composite material with dual functions of adsorption and photocatalysis, and AOP based on SO4•- for the treatment of Acid Orange 7 (AO7) in water. The combination of BiOBr/PBCD-B-D (BOP-24) with peroxymonosulfate (PMS) showed an optimal adsorption-photocatalytic effect. Compared to the 24% PBCD-B-D (BOP-24)/visible light system, the degradation efficiency of BOP-24/PMS system for AO7 is increased from 64.1% to 99.2% within shorter time (∼60 min). Moreover, the BOP-24/PMS system showed a wide range of pH application (pH = 3-11). The addition of Cl-, SO42-, and NO3- promoted the photodegradation of AO7, whereas the addition of CO32- did not. The free radical capture experiments of the BOP-24/PMS AO7 degradation system showed that •O2-, h+, •OH, and SO4•- are reactive species. The proposed BOP-24 system used adsorption and a unique cavity structure to enrich AO7 near the active site, thereby reducing the path for PMS activation. PMS also acted as an electron (e-) acceptor to promote the transfer of part of e- to PMS, thereby further improving the efficiency of carrier separation. The proposed system is an effective method to improve the degradation of pollutants and broadens the range of application of SO4•--based AOP technology.


Asunto(s)
Ciclodextrinas , Contaminantes Ambientales , Contaminantes Químicos del Agua , Bismuto , Celulosa , Luz , Oxidación-Reducción , Peróxidos , Agua , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 808: 151892, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34826470

RESUMEN

Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere with their secretion systems. Thus, the accurate determination of PAEs in Poyang Lake is important for health risk prediction and the development of corresponding control means. Monitoring organic pollutants in water using the diffusive gradient in thin films technique (DGT) has attracted much attention due to more accuracy and convenience than the traditional methods. This study used an inexpensive amphiphilic cyclodextrin polymer (PBCD) as the sorbent for the binding gel. This new binding gel has an ultra-high specific surface area and excellent adsorption performance. Diffusion coefficients of the five PAEs were determined, and the performance of DGT such as adsorption capacity and deployment time (1-4 days) was tested using five PAEs as models. The assembled PBCD-DGT was used to examine the performance in a complex simulated water environment. The sampling capability of PBCD-DGT was verified in Yangshan Lake, and a large-scale field application was conducted in Poyang Lake basin. The results of 11 sampling points showed that the concentration ranges of dimethyl phthalate, diethyl phthalate, diallyl phthalate, dipropyl phthalate, and dibutyl phthalate were 434-2594 ng/L, 40-314 ng/L, 80-527 ng/L, 45-308 ng/L, and ND-182 ng/L, respectively. The health risk index (HI) and ecological risk quotient (RQ) values of PAEs in the Poyang Lake watershed were far below 1, indictating a lower health and ecological risk. Considering that PAEs are bioaccumulative and persistent, it is very necessary to continue to pay attention to its pollution status and health and ecological risk changes in Poyang Lake Basin in the future.


Asunto(s)
Agua Potable , Ácidos Ftálicos , Contaminantes Químicos del Agua , Celulosa , China , Ciclodextrinas , Dibutil Ftalato/análisis , Monitoreo del Ambiente , Ésteres/análisis , Lagos , Ácidos Ftálicos/análisis , Medición de Riesgo , Tecnología , Contaminantes Químicos del Agua/análisis
8.
ACS Appl Mater Interfaces ; 12(10): 12165-12175, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32057224

RESUMEN

Natural organic matter (NOM), organic micropollutants (OMPs), and detrimental microorganisms are three major pollutants that affect water quality. To remove these pollutants, a quaternary ammonium-functionalized ß-cyclodextrin polymer (ß-CDP) is successfully synthesized in the aqueous phase. The N2 and CO2 adsorption/desorption analysis showed that the polymer mainly contains ultra-micropores (<1 nm), with a Langmuir surface area of 89 m2 g-1. Two kinds of NOM, humic acid and fulvic acid, and five OMPs, 2-naphthol (2-NO), 3-phenylphenol (3-PH), 2,4,6-trichlorophenol (2,4,6-TCP), bisphenol A (BPA), and bisphenol S (BPS), were selected as model pollutants to study the performance of ß-CDP and three kinds of commercial adsorbents, including granular activated carbon, DARCO-AC, and two resins, XAD-4 and D-201, were used for comparison. The polymer shows ultrarapid adsorption kinetics for the removal of these pollutants, with pseudo-second-order rate constants two to three orders of magnitude higher than that of the commercial activated carbon and resins. Due to the different adsorption sites of NOM and OMPs, ß-CDP can simultaneously remove these pollutants without competitive adsorption. The maximum adsorption capacity of ß-CDP for HA, FA, 2-NO, 3-PH, 2,4,6-TCP, BPA, and BPS based on the Langmuir model is 40, 166, 74, 101, 108, 103, and 117 mg g-1, respectively. After use, the polymer can be easily regenerated at room temperature. In addition, ß-CDP also showed excellent bactericidal properties due to the quaternary ammonium groups. At a concentration of 15 g L-1, ß-CDP can remove 98% of the tested Escherichia coli. Moreover, the synthesis of ß-CDP is simple, green, and easy to industrialize. All of these findings indicate that ß-CDP, as an ideal multifunctional material, presents potential for practical applications for water treatment and disinfection.


Asunto(s)
Celulosa/química , Ciclodextrinas/química , Contaminantes Químicos del Agua , Purificación del Agua/métodos , beta-Ciclodextrinas/química , Adsorción , Benzopiranos/química , Tecnología Química Verde/métodos , Sustancias Húmicas/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
9.
Adv Mater ; 32(1): e1904815, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31746047

RESUMEN

Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems; however, it has been challenging to observe this experimentally. The current-driven helicity reversal of the skyrmionic bubble in a nanostructured frustrated Fe3 Sn2 magnet is experimentally demonstrated. The critical current density required to trigger the helicity reversal is 109 -1010 A m-2 , with a corresponding pulse-width varying from 1 µs to 100 ns. Computational simulations reveal that both the pinning effect and dipole-dipole interaction play a crucial role in the helicity reversal process.

10.
Environ Res ; 180: 108796, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629085

RESUMEN

Adsorption is one of the most preferred techniques in the advanced treatment of dyeing wastewater. Magnetic porous materials with good adsorption performance, excellent reusability, and a green synthesis route are highly desirable adsorbents in commerce. In this study, we synthesized a magnetic ß-cyclodextrin polymer (MNP-CM-CDP) containing many macro- and ultramicropores in aqueous phase. CO2 adsorption-desorption isotherms and a dye adsorption method provided Langmuir specific surface areas for the MNP-CM-CDP of 114.4 m2 g-1 and 153 m2 g-1, respectively. Model pollutants (BPA, MB, BO2, RhB, Cr(III), Pb(II), Zn(II), and Cu(II)) were rapidly and efficiently removed from the aqueous solution by the MNP-CM-CDP. In addition, the polymer could be easily separated from the solution under an external magnetic field. The adsorption of the contaminants was dependent on pH, while the effects of ionic strength and humic acid were slight in the concentration range studied. The polymer could be easily regenerated at room temperature and retained good adsorption performance. Moreover, the MNP-CM-CDP showed good feasibility for the removal of pollutants from actual dyeing wastewater samples.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Celulosa , Ciclodextrinas , Fenómenos Magnéticos , Polímeros
11.
Nano Lett ; 20(2): 868-873, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869236

RESUMEN

Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science, and they enable potential applications for next-generation spintronic devices. Here, in this communication, the observations of stable Bloch-type magnetic skyrmions in single crystals of 2D vdW Fe3GeTe2 (FGT) are reported by using in situ Lorentz transmission electron microscopy (TEM). We find the ground-state magnetic stripe domains in FGT transform into skyrmion bubbles when an external magnetic field is applied perpendicularly to the (001) thin plate with temperatures below the Curie temperature TC. Most interestingly, a hexagonal lattice of skyrmion bubbles is obtained via field-cooling manipulation with magnetic field applied along the [001] direction. Owing to their topological stability, the skyrmion bubble lattices are stable to large field-cooling tilted angles and further reproduced by utilizing the micromagnetic simulations. These observations directly demonstrate that the 2D vdW FGT possesses a rich variety of topological spin textures, being of great promise for future applications in the field of spintronics.

12.
Water Res ; 157: 292-300, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30959332

RESUMEN

Nitrochlorobenzene compounds (NCBs) are of key interest in environmental monitoring due to their high toxicity. To better understand the presence and fate of NCBs in aquatic environments, an in-situ sampling technique of diffusive gradients in thin films (DGT) based on hydrophilic-lipophilic-balanced (HLB) resin, combined with gas chromatography, was developed to measure four typical NCBs, e.g. meta-chloronitrobenzene (MNCB), para-chloronitrobenzene (PNCB), ortho-chloronitrobenzene (ONCB), and 2,4-dinitrochlorobenzene (CDNB). The diffusion coefficients of MNCB, PNCB, ONCB, and CDNB in agarose-based gel were firstly determined in diffusion cell experiments and ranged from 7.19 × 10-6 to 7.49 × 10-6 cm/s. The capacities of HLB-DGT for MNCB, PNCB, ONCB, and CDNB were higher than 114.65, 117.52, 117.72, and 37.58 µg/cm2, respectively. The HLB-DGT performance on NCBs determination was demonstrated to be independent of natural fluctuations in pH (3-9), ionic strength (0.001-0.5 M), and dissolved organic matter concentrations (0-20 mg/L) and of deployment time (0-120 h). In the field application, the DGT-based method to measure NCBs not only proved to be accurate and effective, but also performed better than the grab sampling method under the variable conditions. This study demonstrates that the newly developed in-situ method based on DGT can provide an attractive alternative for the routine monitoring of NCBs in aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Difusión , Monitoreo del Ambiente , Compuestos Orgánicos , Concentración Osmolar
13.
ACS Nano ; 13(1): 922-929, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30605309

RESUMEN

The discovery of magnetic skyrmion bubbles in centrosymmetric magnets has been receiving increasing interest from the research community, due to the fascinating physics of topological spin textures and its possible applications to spintronics. However, key challenges remain, such as how to manipulate the nucleation of skyrmion bubbles to exclude the trivial bubbles or metastable skyrmion bubbles that usually coexist with skyrmion bubbles in the centrosymmetric magnets. Here, we report having performed this task by applying spatially geometric confinement to a centrosymmetric frustrated Fe3Sn2 magnet. We demonstrate that the spatially geometric confinement can indeed stabilize the skyrmion bubbles by effectively suppressing the formation of trivial bubbles and metastable skyrmion bubbles. We also show that the critical magnetic field for the nucleation of the skyrmion bubbles in the confined Fe3Sn2 nanostripes is drastically less, by an order of magnitude, than that required in the thin plate without geometrical confinement. By analyzing how the width and thickness of the nanostripes affect the spin textures of skyrmion bubbles, we infer that the topological transition of skyrmion bubbles is closely related to the dipole-dipole interaction, which we find is consistent with theoretical simulations. The results presented here bring us closer to achieving the fabrication of skyrmion-based racetrack memory devices.

15.
Sci Rep ; 8(1): 19, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311679

RESUMEN

Magnetostructural coupling in MnMX (M = Co or Ni, X = Si or Ge) system attracts considerable attention for the accompanied multi-magnetoresponsive effects. However, due to the large stress generated from the structural transformation, the alloys become shattered or powder-like, hindering the further investigation and their applications. The possible solution is to embed the MnMX powders into metal matrix. In this paper, we choose Mn0.66Fe0.34Ni0.66Fe0.34Si0.66Ge0.34 as a representative of MnMX alloy and produce Mn0.66Fe0.34Ni0.66Fe0.34Si0.66Ge0.34/Sn composite bulk by hot pressing. The magnetostructural-coupled composites exhibit an improved rate of the transformation temperature shift by magnetic field and broadened operating temperature range. Additionally, we also propose a simple formula based on the entropy-temperature diagram to calculate the isothermal entropy change, which is consistent with the results obtained by the Maxwell relation.

16.
Nano Lett ; 18(2): 1274-1279, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29299928

RESUMEN

Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

17.
Adv Mater ; 29(29)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28589629

RESUMEN

The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3 Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3 Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion-based spintronic devices.

18.
J Phys Condens Matter ; 29(19): 195501, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28290375

RESUMEN

The recent discovery of ultrahigh mobility and large positive magnetoresistance in the topologically non-trivial half-Heusler semimetal LuPtBi provides a unique playground for studying exotic physics and significant perspective for device applications. As an fcc-structured electron-hole-compensated semimetal, LuPtBi theoretically exhibits six symmetrically arranged anisotropic electron Fermi pockets and two nearly-spherical hole pockets, offering the opportunity to explore the physics of Fermi surfaces with simple angle-related magnetotransport properties. In this work, through angle-dependent transverse magnetoresistance measurements, in combination with high-field SdH quantum oscillations, we aimed to map out a Fermi surface with six anisotropic pockets in the high-temperature and low-field regime, and furthermore, identify a possible magnetic field driven Fermi surface change at lower temperatures. Reasons account for the Fermi surface change in LuPtBi are discussed in terms of the field-induced electron evacuation due to Landau quantization.

19.
J Am Chem Soc ; 138(41): 13647-13654, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27709927

RESUMEN

Solid-state thermoelectric technology, interconverting heat to electrical energy, offers a promising solution for relaxing global energy problems. A high dimensionless figure of merit ZT is desirable for high-efficiency thermoelectric power generation. To date, thermoelectric materials research has focused on increasing the material's ZT. Here we first fabricated phase-separated Sn1-xPbxSe materials by hydrothermal synthesis. We demonstrate that the simultaneous optimization of the power factor and significant reduction in thermal conductivity can be achieved in the phase-separated Sn1-xPbxSe material. The introduction of the PbSe phase contributes to improvement of the electrical conductivity and power factor of the SnSe phase. Meanwhile, nanoscale precipitates and mesoscale grains define all-scale hierarchical architectures to scattering phonons, leading to low lattice thermal conductivity. These two favorable factors lead to remarkably high thermoelectric performance with ZT ∼ 1.7 at 873 K in polycrystalline SnSe + 1% PbSe along the pressing direction, which is a record-high ZT for SnSe polycrystals. These findings highlight the prospects of realizing highly effective solid-state thermoelectric devices.

20.
Adv Mater ; 28(32): 6887-93, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27192410

RESUMEN

Superstable biskyrmion magnetic nanodomains are experimentally observed for the first time in a hexagonal MnNiGa, a common and easily produced centrosymmetric material. The biskyrmion states in MnNiGa thin plates, as determined by the combination of in situ Lorentz transmission electron microscopy images, magnetoresistivity, and topological Hall effect measurements, are surprisingly stable over a broad temperature range of 100-340 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA