Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Behav Sci (Basel) ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38920783

RESUMEN

The present study aims to examine the process through which empowering leadership shapes employees' work engagement and in-role performance by facilitating job-crafting behaviors, specifically seeking resources, seeking challenges, and reducing demands. Based on the extensive data from 733 Chinese employees across various organizations located predominantly in Chongqing and Xi'an, China, we carried out different types of statistical analysis such as confirmatory factor analysis (CFA) and structural equation modeling (SEM) to examine the relationships among empowering leadership, specific job-crafting behaviors, work engagement and in-role performance, test our hypothesis and our conceptual model. The results from structural equation modeling (SEM) suggested that empowering leadership was positively related to employees' work engagement and in-role performance; empowering leadership was positively related to employees' job crafting (seeking resources, seeking challenges and reducing demands); seeking resources, seeking challenges and reducing demands were positively related to in-role performance, and seeking challenges and reducing demands were positively related to work engagement. In the relationship between empowering leadership and in-role performance, seeking resources serves as a mediating factor. Similarly, seeking challenges mediates the association between empowering leadership and both work engagement and in-role performance. Furthermore, reducing demands mediates the links between empowering leadership and both work engagement and in-role performance. The implications of these findings are subsequently discussed.

2.
Int J Biol Macromol ; : 133373, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38945717

RESUMEN

In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.

3.
Eur Stroke J ; : 23969873241256251, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845169

RESUMEN

BACKGROUND: Thrombus enhancement sign (TES) is associated with cardioembolic stroke and first-pass angiographic failure in anterior ischemic stroke. However, the relationship between TES and stroke subtype and recanalization status after endovascular treatment (EVT) in basilar artery occlusion (BAO) remains unknown. METHODS: This retrospective study included consecutive patients with acute BAO who underwent EVT between January 2020 and September 2023. Each patient underwent baseline non-contrast computed tomography (CT) and CT angiography. Two independent readers assessed the presence of TES. Stroke types were classified according to the Trial of ORG 10172 for Acute Stroke Treatment. Successful recanalization was defined as a modified Thrombolysis in Cerebral Infarction score of 2b-3 after EVT. Clinical and interventional parameters, along with histopathological thrombi examination results, were compared between the TES-positive and TES-negative groups. The associations between TES and stroke subtype and recanalization status were analyzed using univariate and multivariate analyses. RESULTS: A total of 151 patients were included in the analysis, among whom 116 (77%) exhibited TES. TES showed a significant correlation with cardioembolic and cryptogenic strokes (odds ratio [OR]: 8.56; 95% confidence interval: 3.49-22.4; p < 0.001), whereas the TES-positive thrombi were characterized by a higher fibrin/platelet proportion (p = 0.002) and lower erythrocyte proportion (p = 0.044). The TES-positive group demonstrated favorable outcomes compared to the TES-negative group, including a shorter procedure time (p < 0.001), lower number of thrombectomy attempts (p = 0.010), higher incidence of first pass success (p = 0.022), and lower rate of requiring rescue angioplasty and/or stenting (p < 0.001). In multivariate analysis, TES remained independently associated with successful recanalization (OR: 9.63; 95% CI: 2.33, 47.7; p = 0.003) after adjusting for baseline confounders. CONCLUSIONS: Visualization of TES serves as a reliable and easily accessible marker for identifying cardioembolic and cryptogenic strokes and predicting recanalization success in thrombectomy for basilar artery occlusion.

4.
Small ; : e2401587, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855999

RESUMEN

Heterostructured materials commonly consist of bifunctions due to the different ingredients. For host material in the sulfur cathode of lithium-sulfur (Li-S) batteries, the chemical adsorption and catalytic activity for lithium polysulfides (LiPS) are important. This work obtains a Ni5P2-Ni nanoparticle (Ni5P2-NiNPs) heterostructure through a confined self-reduction method followed by an in situ phosphorization process using Al/Ni-MOF as precursors. The Ni5P2-Ni heterostructure not only has strong chemical adsorption, but also can effectively catalyze LiPS conversion. Furthermore, the synthetic route can keep Ni5P2-NiNPs inside of the nanocomposites, which have structural stability, high conductivity, and efficient adsorption/catalysis in LiPS conversion. These advantages make the assembled Li-S battery deliver a reversible specific capacity of 619.7 mAh g- 1 at 0.5 C after 200 cycles. The in situ ultraviolet-visible technique proves the catalytic effect of Ni5P2-Ni heterostructure on LiPS conversion during the discharge process.

5.
Inorg Chem ; 63(23): 10823-10831, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38803192

RESUMEN

The weak chemical immobilization ability and poor catalytic effect of MXene inhibit its application in lithium-sulfur (Li-S) batteries. Herein, a novel MXene@FeCoNiP composite is rationally developed and utilized as a sulfur host for Li-S batteries. In this well-designed MXene-based nanostructure, the introduction of FeCoNiP in the interlayer of MXene nanosheets can not only effectively inhibit the restacking of MXene nanosheets but also act as an accelerator for the adsorption and catalysis of polysulfides to restrain the shuttling effect and facilitate the transformation of polysulfides. The existence of two-dimensional MXene nanosheets provides more active sites and improves the conductivity, which is beneficial for accelerating the reaction kinetics. Thus, the as-prepared MXene@FeCoNiP composites achieve an outstanding performance for Li-S batteries. This work provides an opportunity to construct an ideal sulfur host with the triple effect of "conductivity-adsorption-catalysis".

6.
ACS Nano ; 18(18): 11849-11862, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662647

RESUMEN

Designing bifunctional electrocatalysts to boost oxygen redox reactions is critical for high-performance lithium-oxygen batteries (LOBs). In this work, high-entropy spinel (Co0.2Mn0.2Ni0.2Fe0.2Cr0.2)3O4 (HEOS) is fabricated by modulating the internal configuration entropy of spinel and studied as the oxygen electrode catalyst in LOBs. Under the high-entropy atomic environment, the Co-O octahedron in spinel undergoes asymmetric deformation, and the reconfiguration of the electron structure around the Co sites leads to the upward shift of the d-orbital centers of the Co sites toward the Fermi level, which is conducive to the strong adsorption of redox intermediate LiO2 on the surface of the HEOS, ultimately forming a layer of a highly dispersed Li2O2 thin film. Thin-film Li2O2 is beneficial for ion diffusion and electron transfer at the electrode-electrolyte interface, which makes the product easy to decompose during the charge process, ultimately accelerating the kinetics of oxygen redox reactions in LOBs. Based on the above advantages, HEOS-based LOBs deliver high discharge/charge capacity (12.61/11.72 mAh cm-2) and excellent cyclability (424 cycles). This work broadens the way for the design of cathode catalysts to improve oxygen redox kinetics in LOBs.

7.
BMC Genomics ; 25(1): 383, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637759

RESUMEN

BACKGROUND: The Asian yellow pond turtle (Mauremys mutica) is an important commercial freshwater aquaculture species in China. This species is a highly sexually dimorphic species, with males growing at a faster rate than females and exhibits temperature-dependent sex determination (TSD), in which the incubation temperature during embryonic development determines the sexual fate. However, the mechanisms of the sex determination or sex differentiation in the Asian yellow pond turtle are remain a mystery. RESULTS: Temperature-specific gonadal transcriptomics of the Asian yellow pond turtle were performed during the thermosensitive period (stage 15) using RNA-seq technology to identify candidate genes that initiate gonadal differentiation. We uncovered candidates that were the first to respond to temperature. These candidates were sexually dimorphic in expression, reflecting differences in gonadal (Cirbp, Runx1) and germline differentiation (Vasa, Nanos1, Piwil2), gametogenesis (Hmgb3, Zar1, Ovoinhibitor-like, Kif4), steroid hormone biosynthesis (Hsd17b5, Hsd17b6), heat shock (Dnajb6, Hsp90b1, Hsp90aa1) and transient receptor potential channel genes (Trpm1, Trpm4, Trpm6, Trpv1). CONCLUSIONS: Our work will provide important genetic information to elucidate the mechanisms of sex control in the Asian yellow pond turtles, and will contribute important genetic resources for further studies of temperature-dependent sex determination in turtles.


Asunto(s)
Diferenciación Sexual , Tortugas , Masculino , Animales , Femenino , Diferenciación Sexual/genética , Tortugas/genética , Temperatura , Perfilación de la Expresión Génica , Desarrollo Embrionario
8.
Small ; : e2309874, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453676

RESUMEN

Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2- sites with Cl- anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35 La3 Zr1.4 Ta0.6 O11.85 -Cl0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21×10-6  S cm-1 . When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.

9.
J Pharm Anal ; 14(1): 69-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352950

RESUMEN

Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3ß (GSK3ß)/ß-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.

10.
Gut Microbes ; 16(1): 2319511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38400752

RESUMEN

The gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Ratones , Animales , Oxaliplatino/toxicidad , Interleucina-10/genética , Microbioma Gastrointestinal/genética , Macrófagos , Probióticos/farmacología , Probióticos/uso terapéutico , Antineoplásicos/efectos adversos
11.
Small ; 20(24): e2308995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168894

RESUMEN

Practical applications of lithium metal batteries are limited by unstable solid electrolyte interphase (SEI) and uncontrollable dendrite Li deposition. Regulating the solvation structure of Li+ via modifying electrolyte components enables optimizing the structure of the SEI and realizing dendrite-free Li deposition. In this work, it is found that the ionic-dipole interactions between the electron-deficient B atoms in lithium oxalyldifluoro borate (LiDFOB) and the O atoms in the DME solvent molecule can weaken the interaction between the DME molecule and Li+, accelerating the desolvation of Li+. On this basis, the ionic-dipole interactions facilitate the entry of abundant anions into the inner solvation sheath of Li+, which promotes the formation of inorganic-rich SEI. In addition, the interaction between DFOB- and DME molecules reduces the highest occupied molecular orbital energy level of DME molecules in electrolytes, which improves the oxidative stability of the electrolytes system. As a result, the Li||Li cells in LiDFOB-containing electrolytes exhibit an excellent cyclability of over 1800 h with a low overpotential of 18.2 mV, and the Li||LiFePO4 full cells display a high-capacity retention of 93.4% after 100 cycles with a high Coulombic efficiency of 99.3%.

12.
Phys Chem Chem Phys ; 26(6): 4828-4839, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38235540

RESUMEN

Over the past few decades, molecular machines have been extensively studied, since they are composed of single molecules for functional materials capable of responding to external stimuli, enabling motion at scales ranging from the microscopic to the macroscopic level within molecular aggregates. This advancement holds the potential to efficiently transform external resources into mechanical movement, achieved through precise control of conformational changes in stimuli-responsive materials. However, the underlying mechanism that links microscopic and macroscopic motions remains unclear, demanding computational development associated with simulating the construction of molecular machines from single molecules. This bottleneck has impeded the design of more efficient functional materials. Advancements in theoretical simulations have successfully been developed in various computational models to unveil the operational mechanisms of stimulus-responsive molecular machines, which could help us reduce the costs in experimental trial-and-error procedures. It opens doors to the computer-aided design of innovative functional materials. In this perspective, we have reviewed theoretical approaches employed in simulating dynamic processes involving conformational changes in molecular machines, spanning different scales and environmental conditions. In addition, we have highlighted current challenges and anticipated future trends in the collective control of aggregates within molecular machines. Our goal is to provide a comprehensive overview of recent theoretical advancements in the field of molecular machines, offering valuable insights for the design of novel smart materials.

13.
EBioMedicine ; 100: 104959, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215690

RESUMEN

BACKGROUND: Exclusive enteral nutrition (EEN) is an important alternative strategy for patients with Crohn's disease (CD), and during this process, microbiota alterations have been observed. However, the underlying mechanisms by which EEN reduces intestinal inflammation are currently unclear. METHODS: The therapeutic potential of enteral nutrition (EN) was assessed using various mouse models. Fecal full-length 16S rDNA sequencing analysis and several CD metagenome datasets were used to identify the candidate therapeutic bacteria Faecalibaculum rodentium (F. rodentium). Whole genome sequencing of F. rodentium and widely-targeted metabolome analysis of the supernatant showed that EN-induced F. rodentium accumulation protected against colitis via histidine biosynthesis. FINDINGS: The therapeutic potential of EN therapy was observed in both dextran sulfate sodium (DSS)-induced colitis and Il10-/- spontaneous colitis mouse models. Accumulation of F. rodentium after EN therapy was determined using full-length 16S rDNA sequencing and verified with several metagenome datasets from patients with CD. Colonization of an isolated F. rodentium could reduce colitis in Il10-/- mice. Significant histidine enrichment was observed in the F. rodentium culture supernatant, and a series of histidine biosynthesis genes were observed in the F. rodentium genome. Engineered Escherichia coli Nissle 1917 (EcN), encoding the heterologous hisG of F. rodentium (EcN-hisG), which was a key driver of histidine biosynthesis in F. rodentium, was found to protect against colitis. INTERPRETATION: This study suggests that EN-induced F. rodentium accumulation protects against colitis in mice via gut bacteria-mediated histidine biosynthesis. FUNDING: A full list of funding bodies can be found in the Acknowledgements section.


Asunto(s)
Colitis , Enfermedad de Crohn , Firmicutes , Humanos , Animales , Ratones , Nutrición Enteral , Interleucina-10/genética , Histidina , Colitis/etiología , Colitis/terapia , Enfermedad de Crohn/microbiología , Bacterias/genética , Modelos Animales de Enfermedad , ADN Ribosómico
14.
RSC Adv ; 14(4): 2214-2225, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38213961

RESUMEN

Fe2O3-loaded NiFe2O4 nanoblocks were successfully developed under a straightforward one-step hydrothermal synthesis method, aiming to detect trace amounts of n-butanol at the parts per billion (ppb) concentration range. The synthesized samples were comprehensively characterized using various techniques, including XRD, SEM, XPS, TEM and SAED. At a tantalizingly low temperature of 130 °C, the Ni/Fe-2 gas sensor demonstrated the optimum response (Ra/Rg = 29.747 @ 10 ppm) to n-butanol. Furthermore, Ni/Fe-2 sensor exhibited remarkable stability and reproducibility and an ultra-low detection limit. The enhanced gas sensitivity was primarily due to the assembly of Ni/Fe-2 nanoblocks from differently sized nanospheres, which exhibited a rich surface porosity conducive to gas adsorption. Besides, the formation of heterojunctions and the augmentation of oxygen vacancy content are also conducive to enhancing gas sensing capabilities. The Ni/Fe-2 sensor is expected to successfully detect trace amounts of n-butanol.

15.
Insects ; 14(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999084

RESUMEN

Intercrops can lower pest densities by increasing plant diversity, altering chemical communication in the arthropod community, and integrating well with other IPM tactics. We used two years of field observations and Y-tube olfactometer assays to explore the effects of intercropping a pear orchard with okra and castor bean on the cosmopolitan fruit-boring pest Grapholita molesta (Lepidoptera: Tortricidae). Intercropping okra reduced G. molesta trap catches in the pear orchard in both years, and intercropping with castor bean reduced them in the second year. Hydrocarbons, phenols, and ketones predominated in the GC-MS assay of okra volatiles, whereas castor bean volatiles were rich in aldehydes, ketones, and esters. Five of the commercially available volatiles released by these plants exhibited repellency to G. molesta in olfactometer trials, especially cinnamaldehyde, dibutyl phthalate, and thymol; the former compound also exhibited attraction to the egg parasitoid Trichogamma dendrolimi (Hymenoptera: Trichogrammatidae). In addition to their repellent properties, okra and castor bean may enhance integrated control of G. molesta in orchards by hosting prey that support populations of generalist predators that either provide biological pest control services within the orchard ecosystem or generate non-consumptive effects that contribute to pest deterence. Among the plant volatiles evaluated, cinnamaldehyde has the best potential for deployment in orchards to repel G. molesta without disrupting augmentative releases of T. dendrolimi.

16.
J Phys Chem A ; 127(37): 7682-7693, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37672626

RESUMEN

The thermal helix inversion (THI) of the overcrowded alkene-based molecular motors determines the speed of the unidirectional rotation due to the high reaction barrier in the ground state, in comparison with the ultrafast photoreaction process. Recently, a phosphine-based motor has achieved all-photochemical rotation experimentally, promising to be controlled without a thermal step. However, the mechanism of this photochemical reaction has not yet been fully revealed. The comprehensive computational studies on photoisomerization still resort to nonadiabatic molecular dynamics (NAMD) simulations based on electronic structure calculations, which remains a high computational cost for large systems such as molecular motors. Machine learning (ML) has become an accelerating tool in NAMD simulations recently, where excited-state potential energy surfaces (PESs) are constructed analytically with high accuracy, providing an efficient approach for simulations in photochemistry. Herein the reaction pathway is explored by a spin-flip time-dependent density functional theory (SF-TDDFT) approach in combination with ML-based NAMD simulations. According to our computational simulations, we notice that one of the key factors of fulfilling all-photochemical rotation in the phosphine-based motor is that the excitation energies of four isomers are similar. Additionally, a shortcut photoinduced transformation between unstable isomers replaces the THI step, which shares the conical intersection (CI) with photoisomerization. In this study, we provide a practical approach to speed up the NAMD simulations in photochemical reactions for a large system that could be extended to other complex systems.

17.
Biology (Basel) ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508424

RESUMEN

Hibernation in turtle species is an adaptive survival strategy to colder winter conditions or food restrictions. However, the mechanisms underlying seasonal adaptions remain unclear. In the present study, we collected hemocytes from Pelochelys cantorii and compared the molecular signature of these cells between the active state and hibernation period based on single-cell RNA sequencing (scRNA-seq) analysis. We found six cell types and identified a list of new marker genes for each cell subpopulation. Moreover, several heat shock genes, including the Hsp40 family chaperone gene (DNAJ) and HSP temperature-responsive genes (HSPs), were upregulated during the hibernation period, which predicted these genes may play crucial roles in the stress response during hibernation. Additionally, compared to hemocytes in the active state, several upregulated differentially expressed immune-related genes, such as stat1, traf3, and socs6, were identified in hemocytes during the hibernation period, thus indicating the important immune function of hemocytes. Therefore, our findings provide a unified classification of P. cantorii hemocytes and identify the genes related to the stress response, thereby providing a better understanding of the adaptive mechanisms of hibernation.

18.
Bioorg Chem ; 137: 106583, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37163810

RESUMEN

Prostate cancer is the second most common cause of cancer-related deaths in men and is common in most developed countries. Androgen deprivation therapy (ADT) that uses abiraterone acetate (AA) is an effective second-line treatment for prostate cancer. However, approximately 20-40% of patients develop primary resistance to abiraterone post-treatment. In this study, we aimed to understand the molecular mechanisms underlying the development of abiraterone resistance in prostate cancer cells and the potential use of black phosphorus nanosheets (BPNS) for treating abiraterone-resistant prostate cancer. We first established abiraterone-resistant prostate cancer PC-3 cells and found that these cells have higher migration ability than normal prostate cancer cells. Using comparative transcriptomic and bioinformatics analyses between abiraterone-sensitive PC-3 and abiraterone-resistant PC-3 cells, we highlighted the differentially expressed genes (DEGs) involved in the biological processes related to prostate gland morphogenesis, drug response, immune response, angiogenesis. We further studied the therapeutic effects of BPNS. Our results show that BPNS reduced the proliferation and migration of abiraterone-resistant PC-3 cells. Bioinformatics analysis, including gene ontology, Kyoto encyclopedia of genes and genomes enrichment analysis, and ingenuity pathway analysis (IPA) of the DEGs, suggested that BPNS treatment controlled cancer cell proliferation, metastasis, and oncogenic signaling pathways. Furthermore, the IPA gene network highlighted the involvement of the MMP family, ATF, and notch families in the anti-prostate cancer function of BPNS. Our findings suggest that BPNS may have a chemotherapeutic function in treating abiraterone-resistant prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos , Fosfatos/uso terapéutico , Resultado del Tratamiento , Doxorrubicina , Perfilación de la Expresión Génica
19.
Carbohydr Polym ; 312: 120829, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059555

RESUMEN

Cellulose nanofibers (CNFs) with large specific surface area and superb adsorption capacity are excellent photocatalyst carriers. In this study, heterojunction powder material BiYO3/g-C3N4 was successfully synthesized for the photocatalytic degradation of tetracycline (TC). The photocatalytic material BiYO3/g-C3N4/CNFs was obtained by loading BiYO3/g-C3N4 on CNFs using electrostatic self-assembly method. BiYO3/g-C3N4/CNFs exhibit a fluffy porous structure and large specific surface area, strong absorption in the visible light range, and the rapid transfer of photogenerated electron-hole pairs. Polymer-modified photocatalytic materials overcome the disadvantages of powder materials that are easy to reunite and difficult to recover. With synergistic effects of adsorption and photocatalysis, the catalyst demonstrated excellent TC removal efficiency, and the composite maintained nearly 90 % of its initial photocatalytic degradation activity after five cycles of use. The superior photocatalytic activity of the catalysts is also attributable to the formation of heterojunctions, and the heterojunction electron transfer pathway was confirmed by experimental studies and theoretical calculations. This work demonstrates that there is great research potential in using polymer modified photocatalysts to improve photocatalyst performance.

20.
Front Chem ; 11: 1094574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778032

RESUMEN

Thermally activated delayed fluorescence (TADF) molecules have a theoretical 100% photoluminescence quantum yield in comparison with traditional fluorescent materials, leading to broad application in organic light-emitting diode (OLED). However, the application of TADF molecules with conjugated donor-acceptor structures in blue OLED remains a challenge due to their generally narrow energy gap between frontier molecular orbitals. Recently, a strategy has been approved in the improvement of the performance in TADF, in which void-carbon atoms between donor and acceptor fragments (donor-void-acceptor (D-v-A)) could regulate blue light emission. In this study, we first select three reported isomers followed by two proposed D-v-A TADF isomers to verify the feasibility of the void-carbon strategy through evaluation of the electronic structures in the excited state and photophysical properties. We further proposed a series of TADF molecules by replacing different donor and acceptor fragments to assess the applicability of the void-carbon strategy from the aspect of simulations in electronic structures, different properties of donor and acceptor fragments, photophysical properties, and analysis in the molecular conjugation. The results indicate that void-carbon strategy has conditional feasibility and applicability. Donor-acceptor molecular properties could be tuned through void-carbon strategy on aromatic acceptor fragments during the selection of promising candidates of TADF molecules. However, the void-carbon strategy does not work for the molecules with antiaromatic acceptor fragments, where the steric hindrance of the molecules plays a dominant role. Our work provides insightful guidance for the design of the blue-emission TADF molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...