RESUMEN
Cardiac pacemaker implantation is an important treatment for symptomatic bradycardia. However, epidemiological data show that the incidence of atrial fibrillation (AF) is significantly higher in patients with implanted pacemakers than in the general population, which may be related to the preoperative presence of multiple risk factors for AF, improvement of diagnostic sensitivity and the pacemaker itself. The pathogenesis of AF after the implantation of pacemaker is related to cardiac electrical remodeling, structural remodeling, inflammation, and autonomic nervous disorder, which are induced by the pacemaker. Moreover, different pacing modes and pacing sites have various effects on the pathogenesis of postoperative AF. Recent studies have reported that reducing the proportion of ventricular pacing, improving the pacing site and setting up special pacing procedures might be highly useful in prevention of AF after pacemaker implantation. This article reviews the epidemiology, pathogenesis, influencing factors, and preventive measures regarding AF after pacemaker surgery.
Asunto(s)
Fibrilación Atrial , Marcapaso Artificial , Humanos , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Estimulación Cardíaca Artificial/efectos adversos , Estimulación Cardíaca Artificial/métodos , Marcapaso Artificial/efectos adversos , Bradicardia/complicaciones , Bradicardia/terapia , Ventrículos CardíacosRESUMEN
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
RESUMEN
The survival of inoculated microbes is critical for successful bioaugmentation in wastewater treatment. The influence of readily available nutrients (RANs) on the colonization of two functional bacteria, Pseudomonas putida M9, a strong biofilm-forming strain, and Comamonas testosteroni A3, a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading strain, in biofilms was studied with 3,5-dinitrobenoic acid synthetic wastewater (DCMM) complemented with various ratios of Luria-Bertani broth (LB). With the increase in LB rate, the biofilm biomass was increased, the percentage of gfp-labeled M9 measured in the mixed culture enhanced, and also M9 became dominant. In laboratory-scale sequencing batch biofilm reactors, with the increase in 3,5-DNBA concentration and extension of the running time, the 3,5-DNBA removal in DCMM wastewater complemented with RANs tended to be more efficient and its removal rates increased gradually over the experimental period. Our study demonstrated that supplementing RANs could be a useful strategy for enhancing colonization of degrading bacteria in wastewater treatment systems.