Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Commun ; 15(1): 7797, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242676

RESUMEN

Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.


Asunto(s)
ADN Ribosómico , Inestabilidad Genómica , Recombinasa Rad51 , RecQ Helicasas , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Recombinación Homóloga , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Reparación del ADN
2.
Cell ; 187(18): 4946-4963.e17, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089253

RESUMEN

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Lipopolisacáridos , Macrófagos , Enfermedades Neuroinflamatorias , Neutrófilos , Plexo Coroideo/metabolismo , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Barrera Hematoencefálica/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Monocitos/metabolismo , Masculino , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Femenino
3.
Int J Biol Macromol ; 279(Pt 2): 134976, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39179086

RESUMEN

P-selectin has been shown to enhance growth and metastasis of mouse tumors by promoting regulatory T cell (Treg) infiltration into the tumors. Theoretically, a P-selectin antagonist could suppress the process. Popylene glycol alginate sodium sulfate (PSS) is a heparin-like marine drug, which was originally approved to treat cardiovascular disease in China. Previously, we reported that PSS was an effective P-selectin antagonist in vitro. However, it is unknown whether PSS can regulate Treg infiltration and its effect on lung metastasis in vivo. Our results showed that PSS at 30 mg/kg significantly suppressed lung metastasis and improved overall survival, with potency comparable to the positive control LMWH. Mechanistic study indicated that PSS blocked tumor cells adhesion and activated platelets by directly binding with activated platelet's P-selectin. Compared to the model group, PSS decreased the percent of Tregs by 63 % in lungs after treating for 21 days while increasing CD8+ T cells (1.59-fold) and Granzyme B+ CD8 T cells (2.08-fold)' percentage for generating an adaptive response for systemic tumor suppression. The study indicated that the P-selectin antagonist, PSS, suppressed lung metastasis by inhibiting the infiltration of regulatory T cells (Treg) into the tumors.


Asunto(s)
Alginatos , Neoplasias Pulmonares , Selectina-P , Linfocitos T Reguladores , Animales , Selectina-P/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Ratones , Alginatos/química , Alginatos/farmacología , Línea Celular Tumoral , Femenino , Metástasis de la Neoplasia
4.
World J Urol ; 42(1): 397, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985166

RESUMEN

PURPOSE: This study aims to investigate the predictive value of CT-based radiomics in determining the success of extracorporeal shock wave lithotripsy (SWL) treatment for ureteral stones larger than 10mm in adult patients. MATERIALS AND METHODS: A total of 301 eligible patients (165/136 successful/unsuccessful) who underwent SWL were retrospectively evaluated and divided into a training cohort (n = 241) and a test cohort (n = 60) following an 8:2 ratio. Univariate analysis was performed to assess clinical characteristics for constructing a nomogram. Radiomics and conventional radiological characteristics of stones were evaluated. Following feature selection, radiomics and radiological models were constructed using logistic regression (LR), support vector machine (SVM), random forest (RF), K nearest neighbor (KNN), and XGBoost. The models' performance was compared using metrics such as the area under the receiver operating characteristic curve (AUC), precision, recall, accuracy, and F1 score. Finally, a nomogram was created incorporating the best image model signature and clinical predictors. RESULTS: The SVM-based radiomics model showed superior predictive performance in both training and test cohorts (AUC: 0.956, 0.891, respectively). The nomogram, which combined SVM-based radiomics signature with proximal ureter diameter (PUD), demonstrated further improved predictive performance in the test cohort (AUC: 0.891 vs. 0.939, P = 0.166). CONCLUSIONS: Integration of CT-derived radiomics and PUD showed excellent ability to predict SWL treatment success in patients with ureteral stones larger than 10mm, providing a promising approach for clinical decision-making.


Asunto(s)
Litotricia , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X , Cálculos Ureterales , Humanos , Cálculos Ureterales/terapia , Cálculos Ureterales/diagnóstico por imagen , Litotricia/métodos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Resultado del Tratamiento , Nomogramas , Anciano , Radiómica
5.
Insects ; 15(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39057241

RESUMEN

To date, five species of reddish-brown Neotriplax have been described, but their highly similar body color and other phenotypic traits make accurate taxonomy challenging. To clarify species-level taxonomy and validate potential new species, the cytochrome oxidase subunit I (COI) was used for phylogenetic analysis and the geometric morphometrics of elytron, pronotum, and hind wing were employed to distinguish all reddish-brown Neotriplax species. Phylogenetic results using maximum likelihood and Bayesian analyses of COI sequences aligned well with the current taxonomy of the Neotriplax species group. Significant K2P divergences, with no overlap between intra- and interspecific genetic distances, were obtained in Neotriplax species. The automatic barcode gap discovery (ABGD), assemble species by automatic partitioning (ASAP), and generalized mixed Yule coalescent (GMYC) approaches concurred, dividing the similar species into eight molecular operational taxonomic units (MOTUs). Geometric morphometric analysis using pronotum, elytron, hind wing shape and wing vein patterns also validated the classification of all eight species. By integrating these analytical approaches with morphological evidence, we successfully delineated the reddish-brown species of Neotriplax into eight species with three new species: N. qinghaiensis sp. nov., N. maoershanensis sp. nov., and N. guangxiensis sp. nov. Furthermore, we documented the first record of N. lewisii in China. This study underscores the utility of an integrative taxonomy approach in species delimitation within Neotriplax and serves as a reference for the taxonomic revision of other morphologically challenging beetles through integrative taxonomy.

6.
Nat Chem Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744986

RESUMEN

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

7.
Front Psychol ; 15: 1288711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770260

RESUMEN

Earth Hour, a global mass effort coordinated to show concern for green urban construction and sustainable development, was first organized by the World Wildlife Fund in Australia in 2007 with a growing trend of participation worldwide. However, analysis of participation in Earth Hour based on a large population are sparse, with only a few studies reporting details in positive results without a clear pattern that explains the potential low participation. This study focuses on the non-participants and analyzed the reasons for low participation in Earth Hour using a questionnaire with 401 college students based on the socio-ecological model. Two aspects are explored: (1) social-demographic features; (2) psychosocial traits (environmental awareness, acceptance for law, social support from family and friends and knowledge about the event). Barriers toward participation are included as mediators to explain how these basic features change students' decision on joining large-scale environmental campaign. A participation analysis method using binary logistic regression and one-way MANOVA is applied in data analysis. This study highlights that the irrelevance between students' belief and practice on environmental protection should not be overlooked, and that college students are inclined to join in groups in relevant activities-conversely, herd effect could greatly reduce their willingness to participation. The findings of this study have wider implications for school educators, practitioners and organizations involved in pro-environmental career. This paper highlights that, from an international perspective, the essence of collective action with a similar nature to Earth Hour and contributes to a global dialogue on fostering sustainable behaviors.

8.
Fluids Barriers CNS ; 20(1): 89, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049798

RESUMEN

Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Ventrículos Cerebrales , Pez Cebra , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/metabolismo , Ventrículos Cerebrales/metabolismo , Médula Espinal/metabolismo , Pez Cebra/metabolismo
9.
Sci Rep ; 13(1): 19054, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925582

RESUMEN

It is of much importance to clarify the impact of technological innovation on carbon emission intensity for the low-carbon transformation of China's economy. This study, based on the panel data of 30 Chinese provinces and municipalities from 2010 to 2020, measures and analyzes the carbon emission intensity and the level of technological innovation, establishing a spatial econometric model to study the spatial spillover effect and a panel threshold model to analyze the nonlinear influence of technological innovation level on carbon emission intensity. The findings are as follows: First, the overall carbon emission intensity in China shows a decreasing trend from 2010 to 2020, with the average dropping from 3.09 in 2010 to 1.98 in 2020; Second, the spatial autocorrelation results reveal that the level of technological innovation and carbon emission intensity in China are obviously aggregated in the global spatial distribution pattern. Third, the regression results of the spatial econometric model show that the direct effect of technological innovation on carbon emission intensity is significantly negative at the level of 1%, that is, the improvement of the technological innovation in a certain area has a significant inhibitory effect on carbon emission intensity. Fourth, based on the level of economic development, there is a significant three-threshold effect of the level of technological innovation on carbon emission intensity in China, and the influence of the level of technological innovation on carbon emission intensity varies in the direction of existence and coefficient values within different threshold intervals. As economic development reaches the third interval, the technological innovation level has the most significant inhibition on carbon emission intensity. These findings enriches the research of the nonlinear relationship between technological innovation and carbon emission intensity, clarifies the spatial spillover effect and threshold effect between among them, and provides inspiration for better promote the low-carbon transformation of economy.

10.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662341

RESUMEN

G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

11.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577601

RESUMEN

Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo , an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.

12.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609192

RESUMEN

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use chronic two-photon imaging in awake mice and single-cell transcriptomics to demonstrate that in addition to these roles, the ChP is a complex immune organ that regulates brain inflammation. In a mouse meningitis model, neutrophils and monocytes accumulated in ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process, including the discovery of epithelial cells that transiently specialized to nurture immune cells, coordinate their recruitment, survival, and differentiation, and ultimately, control the opening/closing of the ChP brain barrier. Collectively, we provide a new conceptual understanding and comprehensive roadmap of neuroinflammation at the ChP brain barrier.

13.
Nat Commun ; 14(1): 3720, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349305

RESUMEN

Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Ratones , Masculino , Animales , Plexo Coroideo/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hormonas Tiroideas/metabolismo , Prealbúmina/genética , Prealbúmina/metabolismo , Transporte Biológico
14.
Fluids Barriers CNS ; 20(1): 45, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328833

RESUMEN

Regulation of the volume and electrolyte composition of the cerebrospinal fluid (CSF) is vital for brain development and function. The Na-K-Cl co-transporter NKCC1 in the choroid plexus (ChP) plays key roles in regulating CSF volume by co-transporting ions and mediating same-direction water movements. Our previous study showed ChP NKCC1 is highly phosphorylated in neonatal mice as the CSF K+ level drastically decreases and that overexpression of NKCC1 in the ChP accelerates CSF K+ clearance and reduces ventricle size [1]. These data suggest that NKCC1 mediates CSF K+ clearance following birth in mice. In this current study, we used CRISPR technology to create a conditional NKCC1 knockout mouse line and evaluated CSF K+ by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). We demonstrated ChP-specific reduction of total and phosphorylated NKCC1 in neonatal mice following embryonic intraventricular delivery of Cre recombinase using AAV2/5. ChP-NKCC1 knockdown was accompanied by a delayed perinatal clearance of CSF K+. No gross morphological disruptions were observed in the cerebral cortex. We extended our previous results by showing embryonic and perinatal rats shared key characteristics with mice, including decreased ChP NKCC1 expression level, increased ChP NKCC1 phosphorylation state, and increased CSF K+ levels compared to adult. Collectively, these follow up data support ChP NKCC1's role in age-appropriate CSF K+ clearance during neonatal development.


Asunto(s)
Plexo Coroideo , Potasio , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Femenino , Ratones , Embarazo , Ratas , Corteza Cerebral/metabolismo , Ventrículos Cerebrales/metabolismo , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
15.
Bioorg Med Chem Lett ; 91: 129370, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301522

RESUMEN

Plinabulin is a promising microtubule destabilizing agent in phase 3 clinical stage for treating non-small cell lung cancer. However, the high toxicity and the poor water solubility of plinabulin limited its use and more plinabulin derivatives need to be explored. Here, two series of 29 plinabulin derivatives were designed, synthesized and evaluated for their anti-tumor effect against three types of cancer cell lines. Most of derivatives exerted obvious inhibition to the proliferation of the cell lines tested. Among them, compound 11c exerted stronger efficiency than plinabulin, and the reason might be the additional hydrogen bond between the nitrogen atom of the indole ring in compound 11c and Gln134 of ß-tubulin. Immunofluorescence assay showed that compound 11c at 10 nM significantly disrupted tubulin structure. Compound 11c also significantly induced G2/M cell cycle arrest and apoptosis in dose dependent manner. These results suggest that compound 11c might be a potential candidate for cancer treatment as antimicrotubule agent.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Tubulina (Proteína)/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Moduladores de Tubulina/química , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad , Apoptosis
16.
Neuron ; 111(10): 1591-1608.e4, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36893755

RESUMEN

Post-hemorrhagic hydrocephalus (PHH) refers to a life-threatening accumulation of cerebrospinal fluid (CSF) that occurs following intraventricular hemorrhage (IVH). An incomplete understanding of this variably progressive condition has hampered the development of new therapies beyond serial neurosurgical interventions. Here, we show a key role for the bidirectional Na-K-Cl cotransporter, NKCC1, in the choroid plexus (ChP) to mitigate PHH. Mimicking IVH with intraventricular blood led to increased CSF [K+] and triggered cytosolic calcium activity in ChP epithelial cells, which was followed by NKCC1 activation. ChP-targeted adeno-associated viral (AAV)-NKCC1 prevented blood-induced ventriculomegaly and led to persistently increased CSF clearance capacity. These data demonstrate that intraventricular blood triggered a trans-choroidal, NKCC1-dependent CSF clearance mechanism. Inactive, phosphodeficient AAV-NKCC1-NT51 failed to mitigate ventriculomegaly. Excessive CSF [K+] fluctuations correlated with permanent shunting outcome in humans following hemorrhagic stroke, suggesting targeted gene therapy as a potential treatment to mitigate intracranial fluid accumulation following hemorrhage.


Asunto(s)
Plexo Coroideo , Hidrocefalia , Humanos , Hidrocefalia/terapia , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/terapia
18.
J Insect Physiol ; 142: 104424, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878701

RESUMEN

Solar ultraviolet radiation (UV) can cause DNA damage in microorganisms. Flap endonuclease 1 (FEN1) is a structure-specific nuclease and plays important roles in DNA replication and repair. At present, the properties and functions of FEN1 have not been characterized in detail in invertebrates such as Bombyx mori. In this study, Bombyx mori FEN1 (BmFEN1) was expressed in E. coli, and was shown to have nuclease activity that nonspecifically cleaved DNA in vitro. However, inside the cell, BmFEN1 did not cleave DNA randomly. Truncated BmFEN1 missing the nuclear localization signal (346-380 aa) still had the nuclease activity, but was no longer precisely localized to the sites of UV-induced DNA damage. It was further found that BmFEN1 favored the faster repair of UV-damaged DNA. The present study will provide a reference for further understanding the functions of BmFEN1 and UV-induced DNA damage repair mechanisms in insects.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Daño del ADN , Escherichia coli , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Señales de Localización Nuclear/genética , Rayos Ultravioleta/efectos adversos
19.
Biodivers Data J ; 10: e96740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761551

RESUMEN

Background: The genus Rhodotritoma Arrow, 1925 (Coleoptera, Erotylidae, Erotylinae, Tritomini) includes 12 known species worldwide, including three species distributed in China. In the last four decades, no work was conducted on Rhodotritoma in China. In this paper, we review the taxonomy of this genus for Chinese fauna and redescribe a newly-recorded species in China. New information: Rhodotritomamanipurica Arrow, 1925 is recorded from China for the first time. The morphological characters of the adult are redescribed in detail and illustrated. A key to species of the genus Rhodotritoma Arrow, 1925 in China is provided. Chinese specimens were collected from Tibet Autonomous Region and Yunnan Province, which were then deposited in the Museum of Hebei University. The holotype examined is kept in the Natural History Museum.

20.
Adv Biochem Eng Biotechnol ; 180: 149-168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34545421

RESUMEN

As an important building block in the chemical industry, methanol has become an attractive substrate in biorefinery owing to its abundance and low cost. With the development of synthetic biology, metabolic engineering of non-methylotrophy to construct synthetic methylotrophy has drawn increased attention. As for the metabolic construction of methanol assimilation pathway in some industrial hosts, several artificial methanol assimilation pathways have recently been designed and constructed based on the computer-aided design. Particularly, these artificial methanol assimilation pathways possess advantages of shorter reaction steps, stronger driving forces, and independence on oxygen. Accordingly, this chapter reviewed strategies of constructing synthetic methylotrophs, including introducing methanol metabolic modules derived from natural methylotrophs and designing artificial methanol assimilation pathways. Future challenges and prospects were also discussed.


Asunto(s)
Ingeniería Metabólica , Metanol , Metanol/metabolismo , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...