Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(3): 75, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376546

RESUMEN

CONTEXT: To lessen the impact of the dangerous metal Cr, this paper applies the first principles to investigate the adsorption behavior and photoelectric properties of GaS on Cr. The effects of doped GaS on Cr adsorption behavior are investigated with four GaS systems, which are pure, boron (B)-doped, nitrogen (N)-doped, and oxygen (O)-doped, in order to maximize the characteristics of GaS for use in novel sectors, to obtain understanding of the impact of doping on the electronic structure and optical properties of GaS adsorption of Cr, as well as to promote the development of the material. Four GaS adsorbed Cr systems, pure, B-doped, N-doped, and O-doped, are optimized, and the optimized results show that the stable adsorption position of Cr on both pure and doped GaS is the top position of Ga atoms, whereas doped elements B, N, and O can promote the adsorption of Cr on GaS, and the order of the strength of this promotion is B > N > O. METHOD: In this paper, molecular simulation calculations and analyses using the CASTEP module in the software Materials Studio are performed to simulate the structure optimization of GaS-adsorbed Cr materials doped with B, N, and O atoms by using the generalized gradient approximation (GGA) plane-wave pseudopotential approach [1] and the Perdew-Burke-Ernzerhof (PBE) generalized function [2]. From the convergence test, it is reasonable to set the K-point network to 4 × 4 × 1 and the truncation energy to 500 eV [3]. In this paper, a 3 × 3 × 1 supercell structure with 18 S atoms and 18 Ga atoms is selected. The convergence value of the iterative accuracy is 1.0e - 5 eV/atom, and all the atomic forces are less than 0.02 eV/Å. A vacuum layer of 16 Å is also set in the C direction to avoid interlayer interactions of GaS. First, we optimize the geometry of the model and then analyze the nature of the adsorption energy and electronic structure corresponding to the model.

2.
Aging (Albany NY) ; 15(21): 11831-11844, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37899172

RESUMEN

Metastasis of gastric cancer (GC) is one of the major causes of death among GC patients. GC metastasis involves numerous biological processes, yet the specific molecular biological mechanisms have not been elucidated. Here, we report a novel tumor suppressor, retinoic acid-induced 2 (RAI2), which is located in the Xp22 region of the chromosome and plays a role in inhibiting GC growth and invasion. In this study, integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and immunohistochemistry staining data suggested that RAI2 expression in GC samples was low. Moreover, the immune infiltration analysis indicated that low expression of RAI2 in GC was associated with a higher intensity of tumor-infiltrating lymphocytes (TILs) and an abundance of Programmed death ligand 1 (PD-L1) expression. Gene set enrichment analysis (GSEA) analysis further revealed that RAI2 regulated some pathways including the GAP junction, focal adhesion and ECM receptor interaction pathway, immune regulation, PI3K-Akt signaling, MAPK signaling, cell cycle, and DNA replication. Furthermore, the knockdown of RAI2 promoted GC cell proliferation, migration, and invasion in vitro. Taken together, these results suggest that the tumor suppressor RAI2 could be a potential target for the development of anti-cancer strategies in GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Pronóstico , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
Front Immunol ; 13: 950213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072582

RESUMEN

Backgrounds: Prior investigations of the tumor microenvironment (TME) of diffuse large B-cell lymphoma (DLBCL) have shown that immune and stromal cells are key contributing factors to patients' outcome. However, challenges remain in finding reliable prognostic biomarkers based on cell infiltration. In this study, we attempted to shed some light on chemokine C-C motif chemokine ligand 8 (CCL8) in DLBCL via interaction with M2 macrophages. Methods: The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was applied to evaluate immune and stromal scores from transcriptomic profiles of 443 DLBCL samples from The Cancer Genome Atlas (TCGA) and GSE10846 datasets. Immune cell infiltration (ICI) clusters were obtained based on different immune cell infiltrations of each sample, and gene clusters were derived through differentially expressed genes (DEGs) between the distinct ICI clusters. Five immune-related hub genes related to overall survival (OS) and clinical stages were obtained by COX regression analysis and protein-protein interaction (PPI) network construction then verified by quantitative real-time PCR (qPCR) and immunofluorescence staining in the FFPE tissues. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TIMER websites were employed to explore the biological functions of CCL8-related DEGs. Uni- and multivariable Cox regression analyses were performed to analyze CCL8 as an independent prognostic risk factor in GSE10846 and were verified in other independent GEO cohorts. Results: A higher stromal score was associated with favorable prognosis in DLBCL. Patients in the ICI B cluster and gene B clusters had a better follow-up status with a higher programmed death ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA4) expression. Most of ICI-related DEGs were enriched for immune-related signaling pathways. Five hub genes with a distinct prognosis association were identified, including CD163, which is a biomarker of M2 macrophages, and CCL8. Abundant M2 macrophages were discovered in the high-CCL8 expression group. The functional analysis indicated that CCL8 is a key component of immune-related processes and secretory granule groups. Cox regression analysis and data from other GSE datasets yielded additional evidence of the prognostic value of CCL8 in DLBCL. Conclusions: CCL8 has been implicated in macrophage recruitment in several solid tumors, and only a few reports have been published on the role of CCL8 in the pathogenesis of hematological malignancies. This article attempted to find out TME-related genes that associated with the survival in DLBCL patients. CCL8 was identified to be involved in immune activities. Importantly, a series of bioinformatics analysis indicated that CCL8 might become an effective target for DLBCL, which interacts with M2 macrophage and immune checkpoint. The potential related mechanisms need to be further elucidated.


Asunto(s)
Quimiocina CCL8 , Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Quimiocina CCL8/genética , Quimiocinas , Biología Computacional , Humanos , Ligandos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Macrófagos/patología , Pronóstico , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA