Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 478: 135461, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154471

RESUMEN

Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH2-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH2-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH2-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O2-) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.


Asunto(s)
Bromuros , Luz , Microcystis , Compuestos de Plata , Microcystis/efectos de la radiación , Microcystis/metabolismo , Catálisis , Compuestos de Plata/química , Bromuros/química , Clorofila A/metabolismo , Clorofila A/química , Purificación del Agua/métodos , Titanio/química , Titanio/efectos de la radiación
2.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608582

RESUMEN

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Asunto(s)
Electrodos , Grafito , Toxinas Marinas , Microcistinas , Compuestos de Plata , Grafito/química , Grafito/efectos de la radiación , Microcistinas/química , Microcistinas/aislamiento & purificación , Catálisis , Compuestos de Plata/química , Fosfatos/química , Óxidos/química , Técnicas Electroquímicas , Tungsteno/química , Clorofila A/química , Zinc/química , Purificación del Agua/métodos , Clorofila/química , Procesos Fotoquímicos , Floraciones de Algas Nocivas
3.
Water Res ; 254: 121340, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428235

RESUMEN

Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.


Asunto(s)
Protones , Purificación del Agua , Salinidad , Estudios de Factibilidad , Ósmosis
4.
Water Res ; 252: 121228, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309060

RESUMEN

Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes. Experimental results indicate that by introducing alkaline-heat and ultrasonic pre-treatments to AD systems, the removal efficiencies of total solids (TS) from the raw grass increased by 60.8 % and 42.5 %, respectively, compared to sole wet fermentation. Pre-treatments have been shown to enhance the stability of AD systems, both in terms of enhancing methane production and mitigating pH fluctuations triggered by the accumulation of organic acids. Remarkably, even though the Rad-Cs leaching rate was highest when the AD system was fed with the alkaline-heat pre-treated grass, it remained unsatisfactory at only 5.77 %. We inadvertently isolated a soil-like component from the raw grass, and analyzed both its proportion in the raw grass and the radioactivity intensity. The results indicate that although the soil constituted only 9.51 % TS of the raw grass, it accounted for a significant 81.35 % of the total radioactivity. The soil, which has a pronounced affinity for ionic Cs, being mixed into the raw grass, was identified as the primary factor limiting the leaching efficiency of Rad-Cs throughout both the pre-treatment and wet fermentation phases.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radiactividad , Poaceae , Fermentación , Anaerobiosis , Biomasa , Radioisótopos de Cesio/análisis , Japón , Suelo
5.
Environ Res ; 231(Pt 3): 116249, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247656

RESUMEN

In this study, humic acid (HA) enhanced 17ß-estradiol (17ß-E2) degradation by Er3+-CdS/MoS2 (ECMS) was investigated under ultrasonic and light conditions. The degradation reaction rate of 17ß-E2 was increased from (14.414 ± 0.315) × 10-3 min-1 to (122.677 ± 1.729) × 10-3 min-1 within 90 min sonophotocatalytic (SPC) reaction with the addition of HA. The results of quenching coupled with chemical probe experiments indicated that more reactive intermediates (RIs) including reactive oxygen species (ROSs) and triplet-excited states were generated in the HA-enhanced sonophotocatalytic system. The triplet-excited states of humic acid (3HA*), hydroxyl radical (•OH), and superoxide radical (•O2-) were the dominant RIs for 17ß-E2 elimination. In addition, the energy- and electron-transfer process via coexisting HA also account for 12.86% and 29.24% contributions, respectively. The quantum yields of RIs in the SPC-ECMS-HA system followed the order of 3HA* > H2O2 > 1O2 > â€¢O2-> •OH. Moreover, the spectral and fluorescence characteristics of HA were further analyzed during the sonophotocatalytic reaction process. The study expanded new insights into the comprehension of the effects of omnipresent coexisting HA and RIs formation for the removal of 17ß-E2 during the sonophotocatalytic process.


Asunto(s)
Sustancias Húmicas , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Estradiol , Especies Reactivas de Oxígeno , Superóxidos , Contaminantes Químicos del Agua/análisis
6.
Appl Microbiol Biotechnol ; 107(11): 3817-3828, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37074383

RESUMEN

Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown. In this study, early succession (≤ 120 days) of biofilm bacterial communities (abundance and diversity) in upper, middle and bottom areas of a newly built cement-lined ductile iron pipeline were evaluated using improved Propella™ biofilm reactor and multi-area analysis. A comparison with old pipelines (grey cast iron, 10 years) was performed. In the newly built pipeline, the abundance of biofilm bacteria did not change significantly between 40 and 80 days, but increased significantly between 80 and 120 days. The biofilm bacterial abundance (per unit area) in the bottom area was always higher than that in the upper and middle areas. Based on alpha diversity index and PCoA results, biofilm bacterial community richness, diversity and composition did not change significantly during the 120-day operation. Besides, biofilm shedding from the walls of newly built pipeline significantly increased bacterial abundance in the outlet water. Opportunistic pathogen-containing genera, such as Burkholderia, Acinetobacter and Legionella, were identified in both water and biofilm samples from newly built pipelines. The comparison between new and old pipelines suggested a higher bacterial abundance per unit area at the middle and bottom areas in old pipelines. Moreover, the bacterial community composition of biofilms in old pipelines was similar to that of newly built pipelines. These results contribute to accurate prediction and management of biofilm microbial communities in drinking water pipelines, ensuring the biosafety of drinking water. KEY POINTS: • Biofilm bacterial communities in different areas of pipe wall were revealed. • The abundance of biofilm bacteria increased significantly between 80 and 120 days. • Biofilm bacterial community compositions of newly built and old pipes were similar.


Asunto(s)
Agua Potable , Abastecimiento de Agua , Bacterias , Biopelículas , Hierro , Microbiología del Agua
7.
Huan Jing Ke Xue ; 43(4): 2030-2038, 2022 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-35393826

RESUMEN

It has been verified that, as an emerging contaminant, microplastics are capable of adsorbing certain traditional contaminants like the heavy metal Cd. However, the majority of previous studies only focused on certain types of virgin microplastics, especially for PE and PS. In addition, this adsorption process might be affected by microplastics inevitably undergoing aging and consequent changes in the natural environment. Unfortunately, the relevant reports on aging effects were mainly about organic pollutants, rather than heavy metals. By far, there have been few comprehensive and mechanistic studies on the key aging effects on the Cd adsorption by various types of microplastics. In this study, five representative types of microplastics (i.e., PS, ABS, PP, PVC, and PET) were selected for aging by ultraviolet radiation, and the physicochemical properties of virgin and aged microplastics were thoroughly compared, including specific surface area, crystallinity, surface functional groups, and surface elements. Accordingly, the changes in adsorption isotherms of Cd by microplastics were discussed. The results showed that:① aging induced non-significant changes in specific surface area but a significant decrease in crystallinity. Surface functional groups also changed, including the emergence of a C=O functional group on PS and ABS, the decrease in C=C absorption peak intensity on ABS, and the increase in absorption peak intensities of C=O, C-O, and polar ester groups on PET. Regarding surface C content, C=C/C-C decreased, whereas C-O and O-C=O increased. The total O content and O/C significantly increased as well. ② The Langmuir model well-fitted the adsorption isotherms of Cd by virgin and aged microplastics. Aging significantly expanded the adsorption capacity of Cd by microplastics, as the order of saturated adsorption capacity before aging was ABS (0.2284 mg·g-1)>PVC (0.1360 mg·g-1)>PS (0.1286 mg·g-1)>PP (0.1005 mg·g-1)>PET (0.0462 mg·g-1) and then became PS (0.2768 mg·g-1)>ABS (0.2586 mg·g-1)>PVC (0.1776 mg·g-1)>PP (0.1721 mg·g-1)>PET (0.0951 mg·g-1) after aging. ③ Both crystallinity and surface functional groups played key roles in the adsorption of Cd by microplastics. As for virgin microplastics, crystallinity was negatively correlated with the saturated adsorption capacity of Cd, because the amorphous regions contributed most to Cd adsorption. Aging brought about the decrease in crystallinity and the increase in amorphous regions, which further promoted the oxidation reaction on microplastics. Consequently, oxygen-containing functional groups increased on the surface and eventually expanded the adsorption capacity of Cd by microplastics. Note that certain specific functional groups of various microplastics also had impacts on the adsorption process. These results provide valuable information about the environmental behaviors and interactions of microplastics and heavy metals in nature.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio , Microplásticos , Plásticos/química , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
8.
Bioresour Technol ; 347: 126688, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35017086

RESUMEN

Tar generated as a by-product during biomass gasification contains a high concentration of refractory organic matters. In this study, a hybrid upflow anaerobic sludge-biochar bed reactor was established for tar treatment, and the methane yield was 120-154 NmL-CH4/g-CODinf, 20-30% higher than the control reactor. COD removal and methane production significantly decreased in both reactors when the influent tar concentration was doubled from 4954 mg-COD/L to 9964 mg-COD/L. When the influent concentration was reduced, the biochar packed reactor showed a faster recovery. Batch tests confirmed that higher tar concentration inhibited methane production and induced longer lagphase. Biochar addition effectively relieved the inhibition and prolonged the retention of organic matters. SEM observation and 16S rRNA analysis suggested that biochar also acted as the microbe's carrier, and promoted the growth of some microbes. The results of this study provide new ideas for tar treatment.


Asunto(s)
Oryza , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Carbón Orgánico , Metano , ARN Ribosómico 16S/genética , Eliminación de Residuos Líquidos
9.
Water Res ; 207: 117783, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34768103

RESUMEN

In this pilot-scale study, an innovative mainstream treatment process that couples the anaerobic membrane reactor (AnMBR) with a one-stage PN/A system was proposed for advancing the concept of carbon neutrality in the municipal wastewater treatment plant. This work demonstrates the start-up procedure of a pilot-scale one-stage PN/A system for mainstream treatment. The 255-day start-up of the one-stage PN/A system involved the cultivation of ammonium-oxidizing bacteria (AOB) from the activated sludge, suppression of nitrite-oxidizing bacteria (NOB), investigation of in-situ growth kinetics of anammox bacteria (AnAOB), and the 50-day operation of the pilot-scale AnMBR-PN/A process for natural mainstream treatment. It is verified in the pilot-scale system for the first time that the in-situ free ammonia (FA) and free nitrous acid (FNA) exposure could effectively eliminate the Nitrospira (the NOB genus) while retaining the Nitosonomas (the AOB genus) community in the suspended sludge. NOB community rebounding was not detected even at the mainstream conditions with low nitrogen concentrations (Influent ammonium concentration=38±6 mg-NH4+-N/L) by intermittent aeration to control the system dissolved oxygen (DO) below 0.5 mg/L. The results of the mainstream treatment showed that the average effluent total nitrogen (TN) in the coupled process was generally lower than 10 mg-N/L, which meets the discharge limits of most prefectures in Japan. The investigated results of the in-situ anammox bacteria (AnAOB) growth kinetics suggested that the promoted start-up strategy of taking advantage of the warm months with higher mainstream temperature to achieve the rapid in-situ growth of the AnAOB is applicable in the investigated regions. From the perspective of the removal performance of the TN and organic substance, the AnMBR-PN/A process has great potential as the layouts of the carbon-neutral mainstream wastewater treatment plants.


Asunto(s)
Compuestos de Amonio , Nitritos , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Bacterias , Reactores Biológicos , Cinética , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
10.
World J Microbiol Biotechnol ; 37(8): 138, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34278536

RESUMEN

Constructed wetlands (CWs) are characterized by low construction cost, convenient maintenance and management, and environmentally friendly features. They have emerged as promising technologies for decentralized sewage treatment across rural areas. Source separation of black water and gray water can facilitate sewage recycling and reuse of reclaimed water, reduce the size of treatment facilities, and lower infrastructure investment and operating cost. This is consistent with the concept of sustainable development. However, black water contains high concentrations of ammonia nitrogen, and the denitrification capacity of CWs is not excellent due to insufficient carbon source. Therefore, application of CWs for black water treatment faces challenges. This article provides a review on the progress in CWs for treatment of the sewage with high-influent nitrogen load, with emphasis on the commonly used strengthening means and the role of plants in nitrogen removal via CWs. The current issues of rural sewage treatment with high-influent nitrogen load by CWs are also assessed. Finally, the challenges and perspectives are discussed for the optimization of CWs-enhanced denitrification strategies.


Asunto(s)
Amoníaco/análisis , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Amoníaco/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/análisis , Humedales
11.
J Environ Manage ; 294: 113009, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126536

RESUMEN

Anaerobic digestion of decabromodiphenyl ether was carried out and compared in two continuously stirred anaerobic bioreactors for 210 days under thermophilic and mesophilic conditions. Results show that the degradation of decabromodiphenyl ether followed the first-order reaction kinetics, which exhibited a higher removal rate in the thermophilic reactor when compared to the mesophilic one, reaching its maximum of 1.1 µg·day-1. The anaerobic digestion of decabromodiphenyl ether was found to involve the replacement of bromines from polybrominated diphenyl ether by hydrogen atoms, gradually forming nona-, octa- and hepta-brominated diphenyl ether, respectively. Under the thermophilic condition, the reactors were dominated by Bacillus sp. and Methanosarcina sp. with high bioactivity and high concentrations of debromination microorganisms.


Asunto(s)
Reactores Biológicos , Éteres Difenilos Halogenados , Anaerobiosis , Hidrógeno , Temperatura
12.
Sci Total Environ ; 787: 147442, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991925

RESUMEN

The nitrogen (N) cascade in rural areas of Changshu County should be measured and evaluated due to the large increase in anthropogenic disturbances in China's Yangtze Delta. Here, we developed a village-scale N flow model using Changshu County and its towns as a case study. The model included four subsystems and was used to describe the driving forces behind the N cascade from agricultural food production and household consumption to the environment (agriculture-food-environment) system. It was found that from 1998 to 2018 the N input increased from 274.63 to 848.65 kg N ha-1. The cropland N use efficiency (NUEc) decreased by 10.35%, whereas the livestock feed N use efficiency (NUEa) increased by 51.84%. A relatively lower NUE, with a higher N input, was found in Shajiabang Town, which was attributed to hairy crab farming. Changes in dietary patterns led to the food N cost (FNC) being in the range of 4.59-7.74 kg kg-1. Over the past two decades, the N losses from the agriculture-food-environment system decreased by 45.40% from 12,436.60 t N yr-1 (1998). The contribution of the croplands, livestock-breeding, and household consumption to the N losses were 32.44%, 37.78%, and 29.78%, respectively. About 62.83% of the total N losses entered the water environment. Nitrogen emissions from the croplands accounted for 63.21% of the N losses into the atmosphere. Nitrogen oxide (NOx) emissions accounted for 38.50% of the gas emissions, followed by NH3 (28.36%) and N2O (2.81%). The total N losses decreased annually but losses to the water environment increased by 5.10% from 60.16% (1998). The contribution of food production to the total N loss displayed a decreasing trend, while that of food consumption exhibited an increasing trend. Population growth and increased volumes of domestic waste in the Changsu area were the main driving forces for the increased contribution of household food consumption. The significant decline in cropland area and increase in built-up and heavily trafficked areas indicated an overall increase in anthropogenic disturbances, stimulating the N cascade in the Yangtze Delta from 1998 to 2018.

13.
Environ Pollut ; 277: 116819, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667746

RESUMEN

This study employed high-throughput quantitative polymerase chain reaction to evaluate the effects of specific co-substrate and additive on the fitness of antibiotic resistome during swine manure composting. The results showed that corncob particle as a co-substrate significantly reduced the relative abundances of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) simultaneously. The diversity of ARGs was also reduced more effectively by corncob addition. Brick granule as an additive reduced the concentrations of bioavailable Cu and Zn. However, the relative abundances of ARGs and MGEs were not reduced by the addition of brick granule subsequently. Redundancy analysis indicated a negative effect of the C content and positive effects of class I integrase gene (intI) and bioavailable metals on the variation of the relative abundance of ARGs (p < 0.01). The Procrustes test showed a higher goodness-of-fit between the relative abundance of ARGs and 16S rRNA genes (r = 0.8166; p < 0.0001). Our results suggests that the effect of corncob particle on the relative abundance of ARGs was achieved by driving the changes in physicochemical properties and microbial communities. This study confirmed the hypothesis of fitness cost and demonstrated the contribution of extra C source to ARG attenuation during composting.


Asunto(s)
Compostaje , Estiércol , Animales , Antibacterianos , Carbono , Genes Bacterianos , ARN Ribosómico 16S , Porcinos
14.
Bioresour Technol ; 326: 124781, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33540215

RESUMEN

Poor processing stability has been cited as the fatal shortcoming of the up-flow anaerobic sludge blanket (UASB) reactor treating starch wastewater (SW). In this study, the SW treatment performance in a one-stage UASB reactor and a pre-acidification equipped UASB process were evaluated together with the microbial dynamics. The results revealed that the pre-acidification provided improvements in terms of the substrate utilization diversity and the stability of the microbial community structure on the UASB reactor. Anaerolineaceae/Methanosaeta was the core functional microbiota in the pre-acidification equipped UASB reactor, indicated the superior abilities on the acetogenic methanogenesis of granules. The genus of Methanobacterium, a hydrogenotrophic methanogen was dominant in the archaeal community in the one-stage UASB reactor. The granules performed very strong hydrogen affinity in methane production, a small amount of propionate was detected in the effluent. These were abnormal, which suggested the high hydrogen turn-over rate in the one-stage UASB reactor.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Concentración de Iones de Hidrógeno , Metano , Almidón , Eliminación de Residuos Líquidos , Aguas Residuales
15.
Waste Manag ; 119: 63-71, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045488

RESUMEN

This study investigated the effects of the addition of micro- (Fe, Co, Ni, and Mo) and macro-(Sulfur) nutrients on mono-digestion of sorghum under mesophilic conditions. A continuous stirred-tank reactor was operated for more than 420 days under seven different experimental conditions. The experimental results showed poor performance for methane production and process stability without nutrient supplementation. Serious deficiencies in Co and S were confirmed by nutrient analysis of dry sorghum and digestate. Nutrient augmentation efficiently enhanced methane production and volatile fatty acid (VFA) removal. Methane production reached 223 mL-CH4/g-VS, almost matching the yield predicted by biochemical methane potential (BMP) test. S was demonstrated to have a critical effect on metal availability in the digester. Consequently, to maintain stable methane fermentation, suitable supplementations of S and Co are recommended for anaerobic sorghum mono-digestion.


Asunto(s)
Biocombustibles , Sorghum , Anaerobiosis , Reactores Biológicos , Metano , Nutrientes
16.
Chemosphere ; 265: 129100, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310316

RESUMEN

Behavior of veterinary antibiotics, the corresponding resistant genes in soil layer of constructed wetlands (red soil), and their response to different hydraulic loading rates (HLR) (2, 5, and 10 cm/d) were investigated. Results indicated that the soil layer had perfect performance for oxytetracycline and ciprofloxacin, yet sulfamethazine removal was unsatisfactory. Detection rates of oxytetracycline, ciprofloxacin and sulfamethazine in the effluent of simulation systems of soil layer were 8.33-36.36%, 8.33-47.83% and 100%, respectively. The model analysis of adsorption and hydrolysis indicated that physical adsorption, which was controlled by exchange reaction process based on diffusion, was the primary adsorption mechanism of target antibiotics in red soil, and the hydrolysis half-life values of antibiotics in the water of soil layer were shorter than them in wastewater. The removal response of oxytetracycline and ciprofloxacin to change of HLR was insignificant, yet the respective effluent concentrations of sulfamethazine at HLR of 2-10 cm/d were 41.90, 61.35 and 73.54 µg/L during treating synthetic livestock wastewater, which revealed significant positive correlation (P < 0.05). The relative abundances of each target resistance genes in soil showed significant increase after treating wastewater (10-5-10-6 to 10-4-10-1), and the total level of those at different HLRs (2, 5, and 10 cm/d) were 3.02 × 10-2, 7.54 × 10-2 and 8.65 × 10-1, respectively. In summary, HLR could affect the removal efficiency of partial antibiotic in soil layer of constructed wetlands, and the expression of antibiotic resistance in the soil gradually increased with increase in the HLR.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Animales , Antibacterianos , Farmacorresistencia Microbiana/genética , Suelo , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
17.
Biotechnol Rep (Amst) ; 28: e00561, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33299810

RESUMEN

Cultivation of biomass crops for energy production is a promising land-use for farmland abandoned owing to radionuclide fallout. However, radionuclides in soil are easily taken up in the crop. To understand phase partitioning of radiocesium Cs (RCs) during anaerobic digestion (AD) of crops, semi-continuous AD experiments were carried out using two types of RCs-contaminated crops. Analysis of fractionated digestate effluent revealed that AD of the crops released RCs into the water phase (up to 82 %), and the efficiency of RCs solubilization depended on crop biodegradability. Adsorption treatment for removal of RCs from the water phase of the digestate indicated a water-zeolite partition coefficient of 0.287 L/g. The efficiency of removal from the water phase was 90 % at an adsorbent dose of 30 g/L.

18.
Sci Total Environ ; 747: 141335, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795800

RESUMEN

Bacterioplanktonic communities, consisting of a few abundant taxa (AT) and many rare taxa (RT), are essential component of riverine ecosystems. Nonetheless, the biogeographic patterns of bacterioplankton and roles of AT and RT in community structuring and functional composition remain uncertain in large rivers. Here, we employ the Yangtze River, which is the third-longest river in the world, as model system. By using high-throughput sequencing and bioinformatics tool of Tax4Fun, the geographical patterns of bacterioplanktonic taxonomic and predicted functional communities are investigated, and the relative importance of abundant and rare subcommunities in community structuring are explored. Results showed a clear spatial variation that the bacterioplanktonic communities of upper, middle and lower reaches of the river are significantly different from each other. Besides, the Three Gorges Dam exhibited impact on the bacterioplankton of upper reach whose community is relatively closer to that of the Poyang Lake. Both the abundant and rare subcommunities showed spatial variation along the river, which is similar to the total bacterioplanktonic community. The rare subcommunity comprised a majority of community diversity with 23.6% of the total sequences and 94.2% of the total OTUs. The rare subcommunity contributes a major part (56.8%) versus abundant subcommunity (16.3%) of the spatial variation of the total community. In addition, the non-RT exhibits more interactions with RT than with themselves, and all of the 33 keystone species are belonged to RT. Hence, the RT is critical for community structuring and assembling. By contrast, no obvious spatial effect was observed for the predicted functional community. The predicted functions of abundant and rare subcommunities are consistent with that of total community, despite their contrasting community composition. In summary, the rare subcommunity show significantly impact on the community structure and assembling, and play an important role in predicted function as 'seed bank' in the Yangtze River.


Asunto(s)
Ecosistema , Ríos , Organismos Acuáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos
19.
Biotechnol Rep (Amst) ; 27: e00515, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32817843

RESUMEN

Biochar is a carbon rich product made from the biomass pyrolysis process. Recently, biochar addition in anaerobic digestion processes has attracted attention for its possible functions to act as pH stabilizing agent, microbial carrier, and interspecies electron transfer. In this study, the effects of rice husk biochar addition in sorghum anaerobic digestion were investigated in batch tests. Under high F/M (food to microorganism) ratio conditions, obvious pH decreases and volatile fatty acids (VFA) accumulation was observed. Addition of 15 g/L biochar was found effective to increase the sorghum maximum methane production rate by 25 % and shorten the lag phase time by 44 %. Further biochar concentration increase showed little effects. Alkalinity increase brought by biochar addition contributed to the performance enhancement. Moreover, the promotive effects of biochar addition on degradation of acetic acid, propionic and butyric acid were not obvious under neutral pH conditions.

20.
Bioresour Technol ; 316: 123891, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32777719

RESUMEN

In this study, a combined process of bio-contact oxidation and constructed wetland for blackwater treatment was assessed. The effects of hydraulic retention time and particle size on treatment performance were systematically studied. Additionally, microbial communities in the combined process were characterized. The results show that the removal efficiency of COD, TN, NH4+-N, and TP under optimum conditions in this study were 81.6%, 56.1%, 42.2%, and 73.7%, respectively. The maximum nitrogen removal rate reached 16.5 g m-2 d-1 (3 d). N and P removed via direct plant absorption accounted for only 19.7% and 16.1% of the total system, respectively. Plants play a crucial role in the microbial community of constructed wetlands and influence the overall performance of the system. The biofilm on roots favored aerobic and heterotrophic bacteria such as the aerobic denitrification microorganisms of Pelagibacterium, Halomonas, and Zoogloea. Overall, the combined process is a suitable technique for the treatment of blackwater.


Asunto(s)
Microbiota , Humedales , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...