Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 191, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643189

RESUMEN

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that causes severe threats to humans and livestock. Macrophages are the cell type preferentially infected by T. gondii in vivo. Protein phosphorylation is an important posttranslational modification involved in diverse cellular functions. A rapidly accelerated fibrosarcoma kinase (A-Raf) is a member of the Raf family of serine/threonine protein kinases that is necessary for MAPK activation. Our previous research found that knockout of A-Raf could reduce T. gondii-induced apoptosis in porcine alveolar macrophages (3D4/21 cells). However, limited information is available on protein phosphorylation variations and the role of A-Raf in macrophages infected with T. gondii. METHODS: We used immobilized metal affinity chromatography (IMAC) in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile changes in phosphorylation in T. gondii-infected 3D4/21 and 3D4/21-ΔAraf cells. RESULTS: A total of 1647 differentially expressed phosphorylated proteins (DEPPs) with 3876 differentially phosphorylated sites (DPSs) were identified in T. gondii-infected 3D4/21 cells (p3T group) when compared with uninfected 3D4/21 cells (pho3 group), and 959 DEPPs with 1540 DPSs were identified in the p3T group compared with infected 3D4/21-ΔAraf cells (p3KT group). Venn analysis revealed 552 DPSs corresponding to 406 DEPPs with the same phosphorylated sites when comparing p3T/pho3 versus p3T/p3KT, which were identified as DPSs and DEPPs that were directly or indirectly related to A-Raf. CONCLUSIONS: Our results revealed distinct responses of macrophages to T. gondii infection and the potential roles of A-Raf in fighting infection via phosphorylation of crucial proteins.


Asunto(s)
Fibrosarcoma , Toxoplasma , Toxoplasmosis , Humanos , Animales , Porcinos , Fosforilación , Cromatografía Liquida , Espectrometría de Masas en Tándem , Toxoplasmosis/parasitología , Toxoplasma/fisiología , Macrófagos/metabolismo
2.
Parasit Vectors ; 16(1): 371, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858158

RESUMEN

BACKGROUND: Toxoplasmosis is a zoonosis with a worldwide presence that is caused by the intracellular parasite Toxoplasma gondii. Active regulation of apoptosis is an important immune mechanism by which host cells resist the growth of T. gondii or avoid excessive pathological damage induced by this parasite. Previous studies found that upregulated expression of microRNA-185 (miR-185) during T. gondii infection has a potential role in regulating the expression of the ARAF gene, which is reported to be associated with cell proliferation and apoptosis. METHODS: The expression levels of miR-185 and the ARAF gene were evaluated by qPCR and Western blot, respectively, in mice tissues, porcine kidney epithelial cells (PK-15) and porcine alveolar macrophages (3D4/21) following infection with the T. gondii ToxoDB#9 and RH strains. The dual luciferase reporter assay was then used to verify the relationship between miR-185 and ARAF targets in PK-15 cells. PK-15 and 3D4/21 cell lines with stable knockout of the ARAF gene were established by CRISPR, and then the apoptosis rates of the cells following T. gondii infection were detected using cell flow cytometry assays. Simultaneously, the activities of cleaved caspase-3, as a key apoptosis executive protein, were detected by Western blot to evaluate the apoptosis levels of cells. RESULTS: Infection with both the T. gondii ToxoDB#9 and RH strains induced an increased expression of miR-185 and a decreased expression of ARAF in mice tissues, PK-15 and 3D4/21 cells. MiR-185 mimic transfections showed a significantly negative correlation in expression levels between miR-185 and the ARAF gene. The dual luciferase reporter assay confirmed that ARAF was a target of miR-185. Functional investigation revealed that T. gondii infection induced the apoptosis of PK-15 and 3D4/21 cells, which could be inhibited by ARAF knockout or overexpression of miR-185. The expression levels of cleaved caspase-3 protein were significantly lower in cells with ARAF knockout than in normal cells, which were consistent with the results of the cell flow cytometry assays. CONCLUSIONS: Toxoplasma gondii infection could lead to the upregulation of miR-185 and the downregulation of ARAF, which was not related to the strain of T. gondii and the host cells. Toxoplasma gondii infection could regulate the apoptosis of host cells via the miR-185/ARAF axis, which represents an additional strategy used by T. gondii to counteract host-cell apoptosis in order to maintain survival and reproduce in the host cells.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas A-raf , Enfermedades de los Porcinos , Toxoplasma , Toxoplasmosis , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Caspasa 3 , Células Cultivadas , Luciferasas , MicroARNs/genética , MicroARNs/metabolismo , Porcinos/genética , Porcinos/metabolismo , Porcinos/parasitología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/parasitología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Proteínas Proto-Oncogénicas A-raf/genética , Proteínas Proto-Oncogénicas A-raf/metabolismo
3.
Parasit Vectors ; 15(1): 58, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177094

RESUMEN

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause a geographically widespread zoonosis. Our previous splenocyte microRNA profile analyses of pig infected with T. gondii revealed that the coordination of a large number of miRNAs regulates the host immune response during infection. However, the functions of other miRNAs involved in the immune regulation during T. gondii infection are not yet known. METHODS: Clustering analysis was performed by K-means, self-organizing map (SOM), and hierarchical clustering to obtain miRNA groups with the similar expression patterns. Then, the target genes of the miRNA group in each subcluster were further analyzed for functional enrichment by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway to recognize the key signaling molecules and the regulatory signatures of the innate and adaptive immune responses of the host during T. gondii infection. RESULTS: A total of 252 miRNAs were successfully divided into 22 subclusters by K-means clustering (designated as K1-K22), 29 subclusters by SOM clustering (designated as SOM1-SOM29), and six subclusters by hierarchical clustering (designated as H1-H6) based on their dynamic expression levels in the different infection stages. A total of 634, 660, and 477 GO terms, 15, 26, and 14 KEGG pathways, and 16, 15, and 7 Reactome pathways were significantly enriched by K-means, SOM, and hierarchical clustering, respectively. Of note, up to 22 miRNAs mainly showing downregulated expression at 50 days post-infection (dpi) were grouped into one subcluster (namely subcluster H3-K17-SOM1) through the three algorithms. Functional analysis revealed that a large group of immunomodulatory signaling molecules were controlled by the different miRNA groups to regulate multiple immune processes, for instance, IL-1-mediated cellular response and Th1/Th2 cell differentiation partly depending on Notch signaling transduction for subclusters K1 and K2, innate immune response involved in neutrophil degranulation and TLR4 cascade signaling for subcluster K15, B cell activation for subclusters SOM17, SOM1, and SOM25, leukocyte migration, and chemokine activity for subcluster SOM9, cytokine-cytokine receptor interaction for subcluster H2, and interleukin production, chemotaxis of immune cells, chemokine signaling pathway, and C-type lectin receptor signaling pathway for subcluster H3-K17-SOM1. CONCLUSIONS: Cluster analysis of splenocyte microRNAs in the pig revealed key regulatory properties of subcluster miRNA molecules and important features in the immune regulation induced by acute and chronic T. gondii infection. These results contribute new insight into the identification of physiological immune responses and maintenance of tolerance in pig spleen tissues during T. gondii infection.


Asunto(s)
MicroARNs , Toxoplasma , Toxoplasmosis , Animales , Análisis por Conglomerados , Inmunidad Innata , Inmunomodulación , MicroARNs/genética , Bazo/parasitología , Porcinos , Toxoplasmosis/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-31878134

RESUMEN

Acute Cadmium (Cd) exposure usually induces hepatotoxicity. It is well known that oxidative stress and inflammation causes Cd-induced liver injury. However, the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in Cd-induced liver injury is not completely understood. In this study, we observed Cd-induced liver damage and the potential contribution of Nrf2, nuclear factor-κB (NF-κB), Nod-like receptor 3 (NLRP3), and mitogen-activated protein kinases (MAPKs) signaling pathways. Changes in serum transaminases and proinflammatory cytokines expression showed that Cd could induce acute hepatotoxicity. Moreover, Nrf2 and its downstream heme oxygenase 1 (HO-1) were inhibited by Cd exposure, and Kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2, was increased. Furthermore, NF-κB, NLRP3, and MAPKs signaling pathways were all activated by Cd intoxication. In conclusion, the inhibition of Nrf2, HO-1, and the activation of NF-κB, NLRP3, and MAPKs all contribute to Cd-induced liver injury.


Asunto(s)
Cadmio/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Modelos Animales , Factor 2 Relacionado con NF-E2/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA